# ECOLOGICAL INVENTORY AND STEWARDSHIP PLAN

for

# SHARON TOWN FOREST SHARON, NEW HAMPSHIRE

Prepared for:

**Sharon Conservation Commission** 



Respectfully submitted by:

Moosewood Ecological LLC

Innovative Conservation and Land Management Solutions

## ECOLOGICAL INVENTORY AND STEWARDSHIP PLAN

of

# SHARON TOWN FOREST SHARON, NEW HAMPSHIRE

Prepared for:

## SHARON CONSERVATION COMMISSION

Written by:

STEVEN LAMONDE Ecologist / Project Manager

JEFFRY N. LITTLETON Principal Ecologist

JAIME McGUIGAN Field Ecologist

NATE MARCHESSAULT Field Ecologist

> MICHAEL HEDDY Field Assistant

Moosewood Ecological LLC

Innovative Conservation and Land Management Solutions

PO Box 9 Chesterfield, NH 03443 (603) 831-1980

jeff@moosewoodecological.com | www.moosewoodecological.com

July 2025

# **Table of Contents**

|                                                                 | Page |
|-----------------------------------------------------------------|------|
| Introduction                                                    | 1    |
| Site Description                                                | 1    |
| Purpose of the Plan                                             | 2    |
| Community Outreach and Engagement – Sharon Town Forest BioBlitz |      |
| Methods                                                         |      |
| Geology, Topography, and Soils                                  |      |
| Natural Communities and Plants                                  | 15   |
| Known and potential rare plants                                 | 18   |
| Invasive plants                                                 | 18   |
| Wildlife Inventory                                              | 20   |
| Ecologically Significant Wildlife Habitats                      | 20   |
| Grasslands                                                      |      |
| Hemlock-Hardwood-Pine Forest                                    |      |
| Marsh and Shrub Wetlands                                        |      |
| Open WaterPeatland                                              |      |
| Temperate and Northern Forested Swamps                          |      |
| Vernal Pools                                                    |      |
| Bird Surveys                                                    | 27   |
| Mammal Surveys                                                  | 30   |
| Reptile and Amphibian Surveys                                   | 31   |
| Invertebrates                                                   | 34   |
| Forest Pest and Pathogens                                       | 37   |
| Landscape Context                                               |      |
| Unfragmented Land Blocks                                        | 39   |
| Wildlife Corridors                                              | 41   |
| Wildlife Habitats Ranked by Ecological Condition                | 43   |
| Climate Change and Resilient Landscapes                         |      |
| Wildlife Habitat and Forest Stewardship                         |      |
| Recommendations and Strategies                                  |      |
| Ecological Inventory Conclusions                                |      |
| Literature Cited and Additional Resources                       |      |
| Appendix A: Birds of Sharon Town Forest                         |      |
| Appendix D. Sharon Town Forest Biodiversity                     | 04   |

| Appendix C: Supplemental Maps                                     | 87 |
|-------------------------------------------------------------------|----|
| Appendix D: Habitat Block Size Requirements for Selected Wildlife | 90 |
| Appendix E: Trail Map Brochure                                    | 91 |
| Appendix F: Forest Carbon Estimates                               | 93 |

# Introduction

At the request of the Town of Sharon Conservation Commission, Moosewood Ecological, LLC conducted an ecological inventory of Robert P. Bass Memorial Town Forest, henceforward referred to as 'Sharon Town Forest' within this report. In consultation with the Conservation Commission, our ecological inventory was designed to develop a well-rounded understanding of the property's natural resources, significant ecological features, and biodiversity. Our findings and recommendations are provided to assist the Conservation Commission in stewarding this important property for generations to come.

#### SITE DESCRIPTION

Sharon Town Forest covers 891 acres in central Sharon, just west of State Route NH-123 (Figure 1). The town of Sharon itself lies in southwestern Hillsborough County in southern New Hampshire and occupies part of the Contoocook River's eastern flank on the slopes of the Wapack Range. The Contoocook River flows northward from the neighboring town of Jaffrey all the way to the City of Concord, where it merges with the Merrimack River. Sharon is a small and sparsely populated town with fewer than 400 residents, and like many New Hampshire communities, its people value the

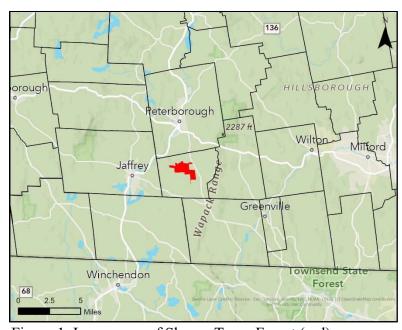



Figure 1. Locus map of Sharon Town Forest (red).

towns rural character. The Sharon Town Forest stands at a testament to the town's long-term commitment to maintain this identify – approximately 9% of Sharon is conserved by the Town Forest alone. Conservation easements protect lands on over two dozen other parcels in the town.

The property offers a variety of recreational opportunities from hiking to hunting, nature observation, and education. Periodic timber harvests provide a source of income for the Town. Fires, trapping, and use of motorized vehicles are prohibited at Sharon Town Forest, whereas hunting and fishing are allowed with State of New Hampshire permits. Roughly 7.3 miles of trails span the property, and nearly the entire length of Meadow Brook through the Town Forest can be followed by taking the Meadow Brook Trail, Sullivan Loop, and Matthews Trail. Visitors primarily access the property directly via the Sullivan Loop trailhead on McCoy Road, the Meadow Brook Trail entrance off NH-123, or the Big Tree Trail entrance off Jarmany Hill Road. Other access points are the Street Street Trail at the end of Milt Street (private road off Jarmany Hill Road) and the Matthews Trail that starts near the site where Meadow Brook crosses Spring Hill Road. Most of Sharon Town Forest's Trails were developed in part by an AmeriCorps project in 1996, and new bridges across Meadow Brook were created in 2008 and 2009. Since

this time, volunteers under the direction of the Sharon Conservation Commission have worked to keep the trails maintained.

Following the initial 659-acre acquisition of Sharon Town Forest in 1975 and its designation as a Town Forest in 1976, at least 970,000 board feet of timber were harvested between 1977 and 1979. By 1990, Sharon Town Forest had expanded to 870 acres and a New England Forestry Foundation (NEFF) report estimated the property contained 4.5 million board feet of marketable timber. This NEFF report characterized the forest as "pole-sized hardwoods that regenerated after the 1938 hurricane and 1939 fire." The next harvest occurred between 2002 and 2006 removing about 280,000-300,000 board feet from west of Meadow Brook, and the most recent timber harvest created six small clear-cuts along the Sullivan Loop Trail and east of Meadow Brook. While most of the property's forest represents fairly even-aged stands, these post-1939 logging events have introduced structural diversity at the landscape scale, thereby improving overall wildlife habitat and diversity. Additionally, the 1996 natural resources inventory of Sharon Town Forest observed a small amount of older-growth forest that survived the 1938 hurricane, 1939 fire, and possibly also woodlot clearing by early European settlers in the area.

Despite a long history of natural disturbances and timber harvests, a current-day bird's-eye view reveals dense forest cover, a necklace of wetlands adorning Meadow Brook, and six prominent patches of shrubland that regenerated following a timber harvest in 2012 (Figure 2). Eastern white pine (*Pinus strobus*) and eastern hemlock (*Tsuga canadensis*), two conifer species, dominate Sharon Town Forest's canopy, especially within the Meadow Brook drainage and nearby slopes. Higher up, on the topographic shoulders of the property, hardwoods become more common, forming large stands of mixed hardwoods and conifers with eastern white pine, eastern hemlock, maples (*Acer* spp.), oaks (*Quercus* spp.), and birches (*Betula* spp.).

When viewed using color-infrared wavelengths, wetland and impervious surfaces may be more apparent to the human eye. The Town Forest lacks any impervious surfaces, and the property's minimal road frontage likely suffers few impacts from road salts and chemicals transported by rainwater runoff. Throughout the center of the property, Meadow Brook stands out as a dark blue string connecting light-colored emergent and shrub wetlands (Figure 3). To the trained eye, multiple vernal pools within Sharon Town Forest's southwestern corner stand out as dark blue dimples. Had this color infrared image not been collected before the hardwoods tree leafed out or before snow had melted, these isolated pools would have been obscured.

## PURPOSE OF THE PLAN

The overall purpose of this ecological inventory and stewardship plan is to provide guidance regarding the protection of Sharon Town Forest's natural resources, including biological diversity, while preserving the existing trail system and working forest landscape of the property. The primary goal of this plan was to assess the current condition of the property to help guide the implementation of management activities that benefit the following stewardship strategies.

- Maintenance of soil productivity;
- Protection of water quality, wetlands and riparian areas;
- Maintenance or enhancement of wildlife habitat;

- Maintenance or enhancement of the overall quality of the forest;
- Diversification of age classes to promote a healthy balance of early, mid, and late successional forest stands to support overall biodiversity;
- Protection of unique or fragile natural areas;
- Protection of unique historic or cultural features; and
- Conservation of native plant and animal species, and natural communities; and
- Incorporation of the effects of climate change to promote ecological resilience for long-term health.

## COMMUNITY OUTREACH AND ENGAGEMENT - SHARON TOWN FOREST BIOBLITZ

In line with the Sharon Conservation Commission's commitment to public outreach and engagement surrounding the town's natural resources, the Conservation Commission hosted a community iNaturalist training and bioblitz event. iNaturalist is an "online social network of people sharing biodiversity information to help each other learn about nature" (iNaturalist.org). The platform crowdsources species sightings into an international database used widely by educators, scientists, and conservationists. The training held on 25 June 2024 at the Town Offices guided participants through the user-friendly process of share observations of flora and fauna with the iNaturalist database.

After a couple of weeks for community members to practice on their own after the training, the Conservation Commission organized a bioblitz event on 6 July 2024 at the Sharon Town Forest to contribute to the broader ecological inventory project. A bioblitz is a communal effort to document as many species as possible within a specific geographic area over a short period of time, often 24 hours. The event ran from 8am to 4pm, during which time seven participants contributed 579 observations of 335 species to the Sharon Town Forest Biodiversity Project – the property's established project within the iNaturalist database. Data collected from

the bioblitz generated a snapshot of the Town Forest's early-July biodiversity, which can be compared to observations made in future years, including to assess local phenological impacts from climate change.

As of April 2025, the Sharon Town Forest Biodiversity Project<sup>1</sup> has collected 2,904 observations of 709 species. Ten iNaturalist users have participated by sharing sightings, while 333 iNaturalist users have helped identify the species photographed. Existing and future datapoints collected within the project are publicly accessible for research, species monitoring, education, and inspiring deeper connections with nature.



A bioblitz participant uses iNaturalist to document common milkweed and pollinators.

<sup>&</sup>lt;sup>1</sup> Accessible online at https://www. inaturalist.org/projects/sharon-town-forest-biodiversity-project

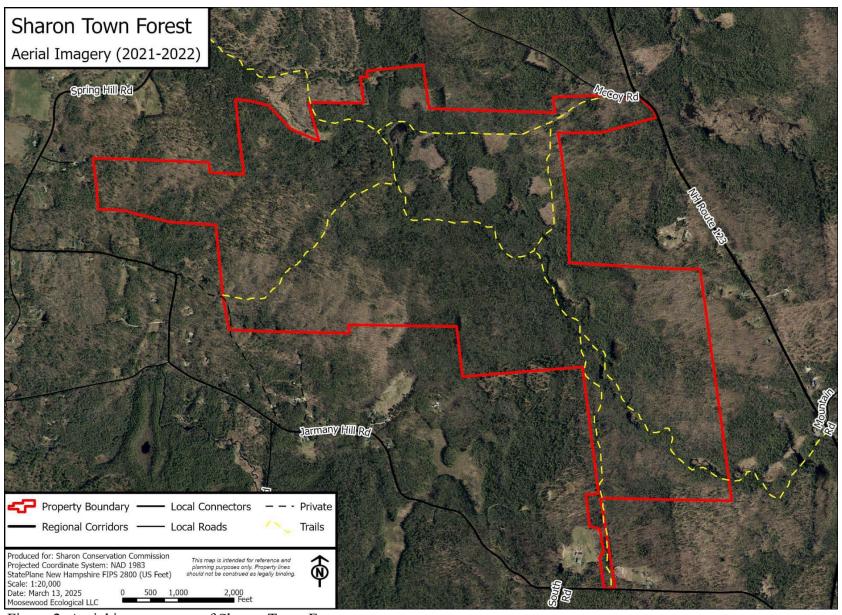



Figure 2. Aerial imagery map of Sharon Town Forest.



Figure 3. Color-infrared imagery map of Sharon Town Forest

# **METHODS**

While much of the information in this report stemmed from data collected on-site, several available data sources aided in our assessment of the property's landscape setting and ecological connectivity. Prior to field surveys, we conducted a desktop analysis in ArcGIS Pro 3.3 to locate natural features of particular interest. Digital datasets and resources used for analysis, mapping, or otherwise complementing our field surveys included:

- Assessment of the Sharon Town Forest Hemlock Looper Damage (Corwin, 2023)
- Natural Resource Inventory of the Sharon Town Forest (Van de Poll, 1996)
- Robert P. Bass Memorial Forest Management Plan (Corwin and Fields, 2007)
- Natural Resources Conservation Service soils dataset
- New Hampshire GRANIT bedrock geology formations
- New Hampshire Fish and Game wildlife corridor model
- New Hampshire Conservation and Public Lands
- New Hampshire Fish and Game State Wildlife Action Plan
- New Hampshire GRANIT aerial and color-infrared imagery
- New Hampshire GRANIT digital parcel dataset for Hillsborough County
- New Hampshire GRANIT LiDAR-derived digital elevation model
- New Hampshire Natural Heritage Bureau rare species and natural communities
- Sharon Town Forest Chronology (Sharon Conservation Commission, 2019)
- Sharon Town Forest Logging History (Sharon Conservation Commission, 2023)
- The Nature Conservancy's Conservation Gateway geodata portal (various datasets)
- Town of Sharon Master Plan (2020)
- United States Fish and Wildlife Service's National Wetlands Inventory (NWI) Plus dataset
- United States Geological Survey (USGS) National Hydrography Dataset
- USGS topographic quadrangles

Following the establishment of a geographic information system (GIS) database for Sharon Town Forest and an initial synthesis of existing information, Moosewood Ecological designed a series of inventory methods that targeted species of conservation concern, wildlife habitats, natural communities, invasive plants, and forest pathogens. Field surveys occurred between April and October, 2024 to optimize detection of species of conservation concern while still experiencing the property in most seasons. At-risk species, as well as wide-roaming species that depend on connected landscapes, act as telling indicators of an area's ecological heath, or integrity. Field surveys also sought to corroborate large-scale habitats mapped by the New Hampshire Wildlife Action Plan, as well as identify and map fine-scale wildlife habitats (e.g., vernal pools, den sites, etc.), exemplary/unique natural communities, invasive plants, forest pathogens (e.g., Beech Bark Disease), and ecologically sensitive areas.

During each visit, Moosewood Ecological recorded all significant observations of wildlife and plants, sometimes using taxon-specific techniques. Breeding birds were sampled via systematic surveys following standard point-count protocols, whereas mammals were primarily sampled with strategically placed camera traps. Amphibians and reptiles were surveyed from spring through summer with an emphasis on vernal pools, streams, and wetlands. Plants, natural communities, and forest pathogens were also surveyed from spring through autumn.

Incidental observations of invertebrates and other organisms were recorded throughout the project's duration. All observations of wildlife, as well as unique, rare, or invasive plants were noted throughout field work, including both visual and auditory observations whenever organisms could be confidently identified. Other signs such as feeding stations, browsing, tracks, scat, and scent stations were also noted. GPS units and digital cameras were used to record primarily significant ecological features, species occurrences, and the site's overall natural beauty.

# GEOLOGY, TOPOGRAPHY, AND SOILS

The bedrock underlying Sharon Town Forest consists primarily of metamorphic rocks associated with the Rangeley Formation, sections of which have been mapped from Massachusetts to western Maine. The Rangely Formation's origins trace back 444 to 419 million years to when seafloor sediment was compacted at the bottom of a deep basin within the ancient Iapetus Ocean. After hundreds of millions of years of uplifting, erosion, faulting, and other tectonic activity, these marine sedimentary rocks were subjected to intense heat and pressure, metamorphizing the bedrock's chemical makeup and positioning the layer to its modern-day location. According to the Bedrock Geologic Map of New Hampshire (Lyons et al., 1997), most of Sharon Town Forest rests atop The Rangely Formation's "Member C" unit, which is characterized as a rusty-weathering clay-rich schist and metamorphosed sandstone, which can be coarse-grained in places. Relatively small pods, or lenses, of bedrock containing calcium- and silica-rich minerals occur occasionally. The southern third of the southeastern corner of Sharon Town Forest contains similar bedrock associated with "Member B" of the Rangeley Formation. In steeper sections of Meadow Brook through this area, exposed bedrock presents a gray, thinlylayered, weakly-metamorphosed, and clay-rich sandstone. Bedrock pods rich in calcium and silica nutrients are uncommon. The scarce availability of calcium in these metamorphosed rocks partly limits the available nutrients to flora at the Town Forest, thus offering plants more acidic growing conditions.

Multiple periods of glaciation significantly altered this landscape, and the Laurentide Ice Sheet that occupied modern-day New Hampshire until 13,000 years ago put many of the finishing touches on Sharon Town Forest's topography. Bedrock scraped away by the glacier's enormous weight now buries much of the property's bedrock in a blanket of glacial till – unsorted clays, silts, sands, gravel, cobble, and boulders. Till deposits in some areas east of Meadow Brook may reach an estimated 60 feet in depth, whereas till across the rest of the property is likely 20 feet thick or less. Along Meadow Brook, stream-deposited alluvial sediments, primarily silt and sand, have accumulated since the retreat of the glacier, and mucky post-glacial swamp deposits formed in low-lying areas depressions. These ancient riverine and

swamp wetlands, potentially thousands-of-years-old, significantly contribute to the range of growing conditions present at Sharon Town Forest.

Topographically, Sharon Town Forest is defined by the Meadow Brook drainage, which flows northwestward from the southeast corner to its exit in the center of the northern property line. From a high point of about 1,320 feet above sea level at the eastern trailhead along Jarmany Hill Road, the property gradually slopes downward to a low point of approximately 890 feet where a minor tributary of Meadow Brook flows across the northern boundary (Figure 4). Except for low-lying areas associated with Meadow Brook, the property contains moderate slopes mostly less than 15%. However, several steep hillsides and infrequent ledges present slopes exceeding 35% when calculated from a high-resolution LiDAR elevation dataset (Figures 5 and 6). East of Meadow Brook, the Town Forest's slope face generally west, southwest, and south, offering plants warmer and drier growing conditions than the cooler, moister slopes with north, northeast, or east-facing aspects to the west of Meadow Brook. This variation in the unique combinations of slope and aspect generates a broad spectrum of landforms. Modeling by The Nature Conservancy depicts eight landform types at Sharon Town Forest (Figure 7), each of which contain their associated flora and fauna.

During the thousands of years since the last glacier retreated, environmental and biological processes gradually developed a range of soil types influenced by the property's Rangely Formation bedrock, overlaying glacial till, and topography. Soil data from the Natural Resources Conservation Service (NRCS), a branch of the United States Department of Agriculture, displays twenty different soil types existing at Sharon Town Forest (Figure 8, Table 1). Except for poorly- and very-poorly drained soils in the wetlands associated with Meadow Brook, the uplands consist primarily of moderately-well to well-drained stony, gravely, or sandy till-derived soils. Where deeper organic loams have developed west of Meadow Brook and close to Jarmany Hill Road and NH-123, modest suitability for agricultural cultivation exists.

The scale at which the NRCS mapped soil types poorly predicts minute wetlands, including vernal pools, seeps, and small forested or shrub wetlands with poorly drained soils. Indeed, Sharon Town Forest's many vernal pools and wet pockets documented by other datasets and field-based observations are not reflected by the NRCS soil data. Despite these shortcomings, these soil data help generally characterize the property's soil texture and wetness, adding another layer of information to the site's overall ecological setting.

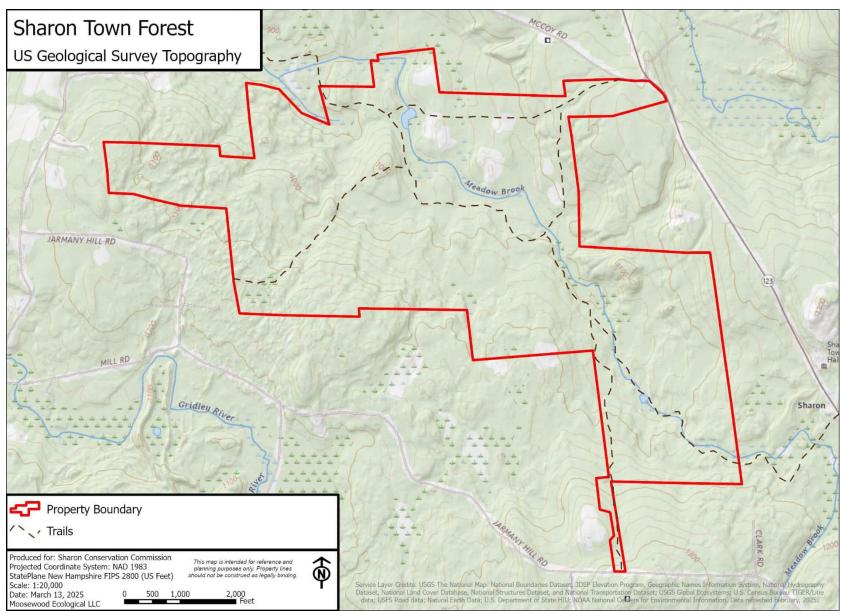



Figure 4. U.S. Geologic Survey topographic map of Sharon Town Forest.

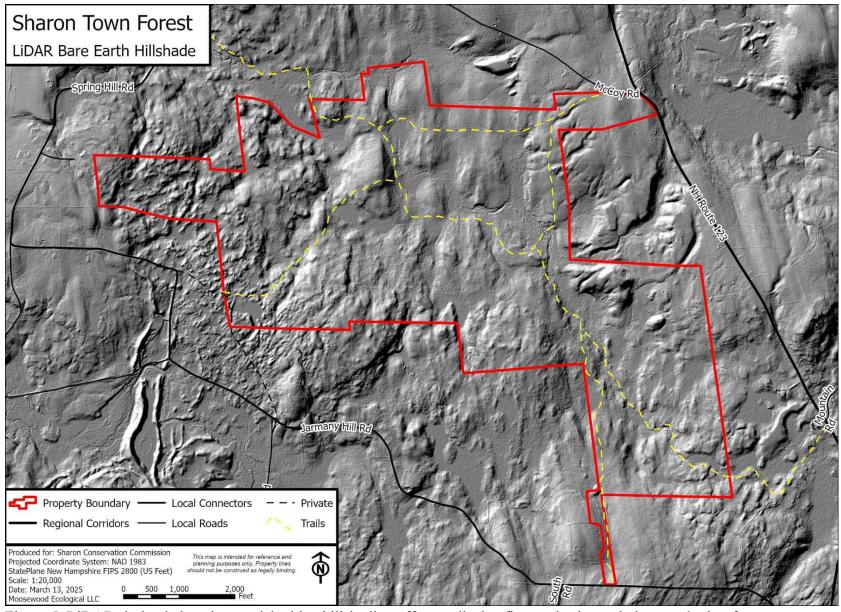



Figure 5. LiDAR-derived elevation model with a hillshading effect to display fine-scale slopes, ledges, and other features.

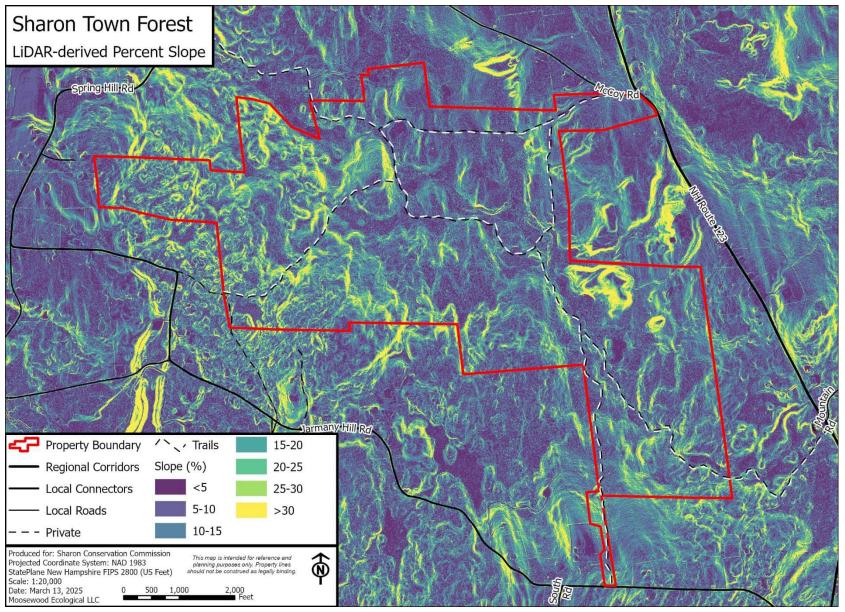



Figure 6. LiDAR-derived slope (%) at Sharon Town Forest, highlighting the properties few level areas and generally bumpy terrain.




Figure 7. The Nature Conservancy's landform dataset at Sharon Town Forest displays a spectrum of topographic settings.

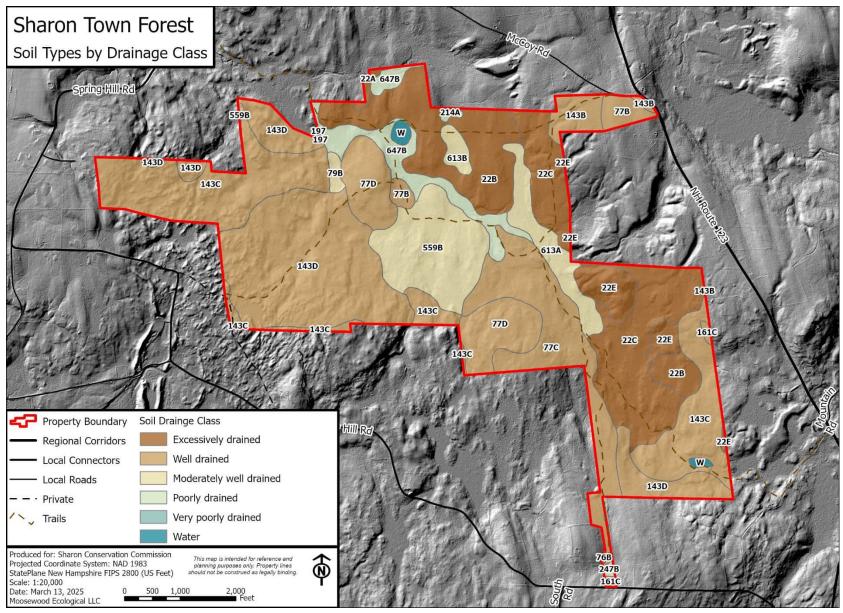



Figure 8. Natural Resources Conservation Service soils data for Sharon Town Forest colored by drainage class.

Table 1. Soil types and characteristics at Sharon Town Forest. Data from Natural Resources Conservation Service.

| Soil<br>Key | Soil Type                                                      | Drainage Class          | Farmland Class               | Forest Soil<br>Group | Acres* |
|-------------|----------------------------------------------------------------|-------------------------|------------------------------|----------------------|--------|
| 197         | Borohemists, ponded                                            | Very poorly drained     | Not prime farmland           | Not classified       | < 0.5  |
| 143B        | Monadnock fine sandy loam, 0 to 8 percent slopes, very stony   | Well drained            | Farmland of local importance | Group IB             | 16     |
| 143C        | Monadnock fine sandy loam, 8 to 15 percent slopes, very stony  | Well drained            | Farmland of local importance | Group IB             | 158    |
| 143D        | Monadnock fine sandy loam, 15 to 35 percent slopes, very stony | Well drained            | Not prime farmland           | Group IB             | 190    |
| 161C        | Lyman-Tunbridge-Rock outcrop complex, 3 to 15 percent slopes   | Well drained            | Not prime farmland           | Group IIA            | 2      |
| 214A        | Naumburg fine sandy loam, 0 to 3 percent slopes                | Poorly drained          | Not prime farmland           | Group IIB            | 2      |
| 22A         | Colton gravelly sandy loam, 0 to 3 percent slopes              | Excessively drained     | Not prime farmland           | Group IC             | 3      |
| 22B         | Colton gravelly sandy loam, 3 to 8 percent slopes              | Excessively drained     | Not prime farmland           | Group IC             | 94     |
| 22C         | Colton gravelly sandy loam, 8 to 15 percent slopes             | Excessively drained     | Not prime farmland           | Group IC             | 115    |
| 22E         | Colton gravelly sandy loam, 15 to 60 percent slopes            | Excessively drained     | Not prime farmland           | Group IIA            | 26     |
| 247B        | Lyme fine sandy loam, 0 to 8 percent slopes, very stony        | Poorly drained          | Not prime farmland           | Group IIB            | 1      |
| 559B        | Skerry fine sandy loam, 0 to 8 percent slopes, very stony      | Moderately well drained | Farmland of local importance | Group IA             | 70     |
| 613A        | Croghan loamy fine sand, 0 to 3 percent slopes                 | Moderately well drained | Farmland of local importance | Group IC             | 30     |
| 613B        | Croghan loamy fine sand, 3 to 8 percent slopes                 | Moderately well drained | Farmland of local importance | Group IC             | 7      |
| 647B        | Pillsbury fine sandy loam, 0 to 8 percent slopes, very stony   | Poorly drained          | Not prime farmland           | Group IIB            | 37     |
| 76B         | Marlow fine sandy loam, 3 to 8 percent slopes                  | Well drained            | All areas are prime farmland | Group IA             | <0.5   |
| 77B         | Marlow fine sandy loam, 0 to 8 percent slopes, very stony      | Well drained            | Farmland of local importance | Group IA             | 14     |
| 77C         | Marlow fine sandy loam, 8 to 15 percent slopes, very stony     | Well drained            | Farmland of local importance | Group IA             | 86     |
| 77D         | Marlow fine sandy loam, 15 to 35 percent slopes, very stony    | Well drained            | Not prime farmland           | Group IA             | 60     |
| 79B         | Peru fine sandy loam, 0 to 8 percent slopes, very stony        | Moderately well drained | Farmland of local importance | Group IA             | 4      |
| W           | Water                                                          |                         | Not prime farmland           | Not classified       | 4      |

<sup>\*</sup> Note: acreage calculations in ArcGIS yielded a property size of 920 acres, which differs from the stated property size (891 acres) in Town of Sharon documents.

# PLANT INVENTORY

#### NATURAL COMMUNITIES AND PLANTS

Natural communities are assemblages of plants, their physical environments (i.e., growing conditions), and ecological processes that affect them. Essentially, natural communities form ecological units that are repeated in the landscape, thereby providing a useful framework when describing vegetated areas. Natural communities include both uplands and wetlands, such as forests, woodlands, shorelines, vernal pools, forested swamps, peatlands, floodplains, and places with scarce vegetation like deep aquatic systems, rocky alpine zones, and sand dunes. Each natural community is distinguished by its species composition, physical structure, and overall condition.

These communities provide scientists and resource managers with an ecological understanding of the land and its inhabitants to make intelligent, informed decisions regarding land use. Therefore, natural community classifications provide conservationists with a powerful tool to guide strategic planning. Equally important, such classifications provide a basis for developing inventory and monitoring programs, as well as a method to document and track rare species and exemplary natural communities. The natural community types described within the study area use Sperduto and Nichols (2011) classification system of New Hampshire's natural communities. A rarity rank, assigned at the state level by the New Hampshire Natural Heritage Bureau (NHNHB), follows each natural community name in the description. A rank of 'S5' indicates a common and secure community, whereas an S1 rank indicates a critically imperiled community at high risk of loss.

Natural communities and other ecological features at the Sharon Town Forest property contribute to the study area's wildlife biodiversity by providing different combinations of plant composition and structure. These include multiple types of uplands and wetlands, open and closed canopies, and both shrubby thickets and tall forests.

All forests at the Sharon Town Forest property fall within the Laurentian mixed forest zone, with the dominant natural system on the property being the hemlock – hardwood – pine forest system. The town of Sharon resides within a "tension zone" between northern and southern forest types, and though most communities fall within this system, there is a notable presence of species with both colder and warmer affinities. Notably, the forest contains small assemblages of species typical in lowland spruce - fir forest/swamp systems, a natural community system that begins to appear at around 1000 feet in elevation but becomes much more common in New Hampshire from the White Mountains north. Red spruce (*Picea rubens*) and balsam fir (*Abies balsamea*) are the defining species of this system, while hemlock – hardwood – pine forests are dominated by varying proportions of eastern hemlock (*Tsuga canadensis*), eastern white pine (*Pinus strobus*), American beech (*Fagus grandifolia*), and northern red oak (*Quercus rubra*). At least two types of hemlock – hardwood – pine forest were found on the property.

The first type, hemlock – beech – oak – pine forest (S5), dominates much of the property and can be found near the McCoy Road entrance until just after the trail splits, east of Sullivan Loop, and at the southwestern part of the property, shortly after the Big Tree Trail begins at the Meadow Brook Trail. This natural community is floristically diverse but generally consists of

varying proportions of eastern hemlock, eastern white pine, American beech, and northern red oak. Other tree species common to this natural community include red maple (*Acer rubrum*), black birch (*Betula lenta*), and paper birch (*Betula papyrifera*). Accompanying the overstory trees, herbs typical of this community grow along the forest floor, including partridgeberry (*Mitchella repens*), Canada mayflower (*Maianthemum canadense*), wild sarsaparilla (*Aralia nudicaulis*), and pink lady's slippers (*Cypripedium acaule*). Along with these species, more northern species, such as red spruce, balsam fir, bluebead lily (*Clintonia borealis*), and velvetleaf blueberry (*Vaccinium myrtilloides*) can be found in low densities within cool or moist microhabitats in this community.

Within the center of the property, along much of the Sullivan Loop and the Meadow Loop Trail until it meets with Big Tree Trail, lies the hemlock forest community (S4). This community is strongly dominated by eastern hemlock in the overstory, which creates shady conditions, making it difficult for many herbaceous species to grow. Sparse herbaceous species can be found in the understory, such as threeleaf goldthread (*Coptis trifolia*), intermediate wood fern (*Dryopteris intermedia*), and partridgeberry, as well as mosses and liverworts like greater whipwort (*Bazzania trilobata*). This area has substantial portions that were impacted by hemlock looper, resulting in nearly complete mortality of hemlocks. These hemlock snags still stand tall but have lost their needles, allowing copious amounts of sunlight to reach the forest floor. The vegetation has quickly responded to these conditions, with a lush understory of ferns such as cinnamon fern (*Osmundastrum cinnamomeum*), intermediate wood fern, and hay-scented fern (*Dennstaedtia punctilobula*), and dense regeneration of red maple, black birch, and yellow birch (*Betula alleghaniensis*) seedlings.

Other than these two dominant natural communities, another unique forest community occurs at the boundary northeast of the intersection of Meadow Brook Trail and Big Tree Trail. The forest here contains indicators of slight enrichment, and may be transitional between the hemlock – beech – oak – pine community and the semi-rich sugar maple forest community (S3S4). Here, hardwoods dominate the canopy such as paper birch, northern red oak, and red maple, with a notable presence of indicators of at least partial enrichment, such as sugar maple (*Acer saccharum*) and white ash (*Fraxinus americana*), as well as understory indicator species like Christmas fern (*Polystichum acrostichoides*) and maple-leaved viburnum (*Viburnum acerifolium*).

While not true natural communities, several openings within the Sharon Town Forest property provide important habitat for wildlife species. A short walk from the entrance on McCoy Road is a small meadow, containing various ferns, grasses, and forbs. The common milkweed (Asclepias syriaca) and goldenrods (Solidago spp.) here provide nectar for insects, and this area represents unique pollinator habitat on the property. Continuing past where the trail splits in either direction are a complex of patch cuts from a harvest in 2012. These sites are actively regenerating with pole-sized trees such as birches (Betula spp.) and white pine. Accompanying them are abundant blueberries (Vaccinium corymbosum, V. angustifolium, V. myrtilloides) that are not only favored nectar sources of bumblebees and other pollinators, but provide vital foraging opportunities for large mammals like black bears.

Wetlands of multiple types cover the remaining topographic surfaces of the study area, and these species-rich settings significantly contribute to biodiversity at the Sharon Town Forest property. These range from forested wetlands to open marshes and peatlands.

The first wetland community is past where the Sullivan Loop splits if entering from the McCoy Road entrance, between the first patch cuts on either leg of the loop trail. This is a forested seep showing characteristics of an acidic *Sphagnum* forest seep community (S3S4), where the water flows south in broad sheet flow until it meets with Meadow Brook. The sphagnum mosses (*Sphagnum spp.*) that cover the forest floor here compress underfoot, revealing the cool, flowing water below. Only plant species that can survive under saturated conditions persist here, such as northern long sedge (*Carex folliculata*), spinulose wood fern (*Dryopteris carthusiana*), crested wood fern (*Dryopteris cristata*), and the showy greater purple-fringed orchid (*Platanthera grandiflora*). Trees find refuge on small hummocks here, and include red maple and eastern hemlock. Where the seep meets with Meadow Brook is a small area with abundant red spruce and balsam fir in the overstory, and species often found in spruce – fir swamps like three-seeded sedge (*Carex trisperma*) and dewdrop (*Rubus dalibarda*).

The remaining forested wetlands are along Meadow Brook and its tributaries, along several stretches that do not constitute their own natural communities but contain unique plants along the banks and within the stream. Along the edges of the flowing stream, cinnamon fern, long beech fern (*Phegopteris connectilis*), wood anemone (*Anemonoides quinquefolia*) are frequent, and where the water slows and becomes shallow, small portions of subacid forest seeps (S3S4) host species like tall meadow-rue (*Thalictrum pubescens*), creeping foamflower (*Tiarella stolonifera*), and American water-pennywort (*Hydrocotyle americana*). There is one notable drainage swamp along the eastern boundary that exhibits slight enrichment due to groundwater seepage, and therefore is unique in otherwise acidic soil conditions (Van de Poll, 1996).

Throughout the rest of Meadow Brook lie many open wetlands which are mostly characterized as sedge meadow marshes (S4). The species composition of this natural community is diverse, with the key components being a lack of trees, infrequent shrubs, and abundant herbaceous species like grasses, sedges, and forbs. Within the sedge meadow marshes at the Sharon Town Forest property, frequent grasses and sedges are sallow sedge (*Carex lurida*), three-way sedge (*Dulichium arundinaceum*), northwest territory sedge (*Carex utriculate*), and rattlesnake mannagrass (*Glyceria canadensis*), which are accompanied by other flowering plants like common boneset (*Eupatorium perfoliatum*), swamp candles (*Lysimachia terrestris*), meadowsweet (*Spiraea alba*), and steeplebush (*Spiraea tomentosa*). Other smaller areas of open wetlands along the eastern portion of Meadow Brook exhibit characteristics associated with nutrient-poor fens.

The remaining wetland communities are small and isolated, but floristically unique. On the property near where the Milt Street Trail meets with the property boundary, two wetlands north and south of the trail show characteristics of the black gum – red maple basin swamp community (S3). This community is uncommon in New Hampshire and reaches the northern extent of its range in the southern part of the state. This community is defined by the abundance of black gum (*Nyssa sylvatica*) in the canopy, accompanied by red maple. Shrubs are frequent in this community and include winterberry holly (*Ilex verticillata*) and highbush blueberry (*Vaccinium corymbosum*),

while sphagnum mosses dominate the saturated forest floor. The uncommon Massachusetts fern (*Coryphopteris simulata*) was found within these wetlands, accompanied by its more southern counterparts.

The final wetland community is a small mineotrophic fen that lies approximately half a mile west of where the Big Tree Trail meets with the Meadow Brook Trail. Here, the canopy retreats and transitions to an open lawn of sphagnum mosses, dwarf shrubs, and herbaceous vegetation. Swamp dewberry (*Rubus hispidus*) creeps along the saturated sphagnum, with abundant, showy flowers like rose pogonia (*Pogonia ophioglossoides*) and bog aster (*Oclemena nemoralis*), graminoids like tawny cotton-grass (*Eriophorum virginicum*), and abundant marsh fern (*Thelypteris palustris*).

## KNOWN AND POTENTIAL RARE PLANTS

In addition to exemplary natural communities, NHBHB also maintains a list of rare and uncommon plants. Rare plants include those listed as endangered or threatened by state or federal agencies. Uncommon plants include those listed as state watch species, indeterminate species, or species otherwise monitored by the Natural Heritage Bureau. The state watch classification identifies species vulnerable to becoming threatened, whereas indeterminate species are under review for listing as endangered, threatened, or watch species, but their rarity, nativity, taxonomy, and/or their nomenclature is not clearly understood.

While not listed, surveys detected several American chestnut (*Castanea dentata*) saplings on the property. This species is actively being tracked by NHBHB. Chestnut trees were once abundant on the landscape but rarely reach maturity due to the accidental introduction of chestnut blight (*Cryphonectria parasitica*) in North America during the early 1900s.

Though not species of conservation concern, several plant species uncommon in the region were detected. The aforementioned greater purple-fringed orchid is large and showy, and many individuals were found along seeps and other wetland edges. Its smaller, more discrete relative, small green wood orchid (*Platanthera clavellata*), was found in abundance along the Sullivan Loop between where the trail splits from the McCoy Road entrance until the first patch cut along the northern portion of the loop. Within that patch cut, several narrowleaf gentian (*Gentiana linearis*) plants were observed. Several species infrequent in this latitude were observed, like creeping snowberry (*Gaultheria hispidula*), which is more common in the north, and black gum, which is more common further south. All of these species contribute to and highlight the ecological importance of the Sharon Town Forest property.

#### INVASIVE PLANTS

Within the framework of this study, we defined invasive plants as any species non-native to New England and whose introduction causes, or is likely to cause, ecological harm. Invasive species aggressively compete with, and displace, native flora and fauna communities (Mehrhoff *et al.* 2003). These introduced species possess many traits that provide them with a competitive edge, including the production of numerous offspring, adaptation to a variety of site and soil conditions, ability to thrive in disturbed areas, early or rapid development in the spring, and prevention of native species from accessing adequate sunlight and nutrients.

Many of the invasive plants found in New England arrived here through various human pursuits, from ornamental landscaping to erosion control. Many non-native species now benefit from natural or semi-natural propagation via human activities and wildlife, the latter of whom transport seeds via ingestion and defecation. Several other invasive species, including plants, macroinvertebrates, and fungi, were brought to North America inadvertently through shipments of various products from other continents. Historically, these invasive organisms have caused the demise of American chestnuts and elms (*Ulmus spp.*). Currently, New Hampshire faces many other pathogens that harm our forests, including Emerald Ash Borer (*Agrilus planipennis*), Beech Bark Scale Disease (*Cryptococcus fagisuga*), and Hemlock Woolly Adelgid (*Adelges tsugae*).

Sixteen species of non-native plant were detected within the Sharon Town Forest property. Some species, like red clover (*Trifolium pratense*) and large hop clover (*Trifolium aureum*), represent little threat to native species while also providing ample feeding opportunities to native pollinators, while others threaten the ecological integrity of the property. Fortunately, all but a single species of aggressive invasive species detected on the property were observed in extremely low abundance, but the presence of many of these species should be considered during future management considerations.

Of aggressive invasive plant species, four species were detected on the property in low abundance. Multiflora rose (*Rosa multiflora*) was detected in the meadow and can form dense thickets. Oriental bittersweet (*Celastrus orbiculatus*) was also detected in the meadow, and this vine can strangle trees, shrubs, and herbaceous vegetation. Japanese barberry (*Berberis thunbergii*) was detected south of the westernmost wetland at the northern border, and is a shade-tolerant shrub that can take over the forest understory. Wall lettuce (*Mycelis muralis*) was detected north of where Big Tree Trail meets Jarmany Hill Road, and is a small annual plant that can form dense colonies, shading out other herbaceous vegetation. While not impacting the ecological integrity of the property currently, disturbance events like logging and trail clearing can lead to these species' spread.

One species that has had detrimental impacts on the Sharon Town Forest is glossy buckthorn (*Frangula alnus*). This species was found in variable densities throughout most forest openings on the property, including the meadow, patch cuts, forest openings created by hemlock looper damage, along Meadow Brook and its tributaries, and especially along the edges of wetlands. This species is a small tree/shrub of openings and wetland edges that can grow in thick monocultures and leaf out early, shading out and outcompeting native vegetation. The presence of this species in abundance also poses threat during future disturbance events, as birds and other wildlife spread seeds and this species rapidly colonizes openings.

# WILDLIFE INVENTORY

## ECOLOGICALLY SIGNIFICANT WILDLIFE HABITATS

The New Hampshire State Wildlife Action Plan (SWAP) was first developed in 2005 by the New Hampshire Fish and Game Department in collaboration with various agencies, organizations, and individuals. The most recent revision was completed in 2015, with statewide habitat data updates occurring every five years, and a new update expected this year, 2025. The SWAP is a key planning and educational tool for conserving New Hampshire's biodiversity, widely used by federal, state, and municipal agencies, conservation commissions, land trusts, natural resource professionals, and private landowners. It supports informed land use and management decisions to maintain diverse wildlife habitats, ensuring common species remain abundant while preventing the decline of rare and endangered species.

As part of the SWAP, 28 general habitat types were identified through an iterative process combining complex modeling, existing datasets, and known plant communities, geology, soils, and hydrology. Of these, seven habitat types were mapped within Sharon Town Forest (Table 1). The combination of various uplands and wetland types provide distinct habitats for diverse wildlife at Sharon Town Forest. This diversity was highlighted through productive wildlife surveys for birds, mammals, amphibians, reptiles, and invertebrates. Appendices A and B list all species reported from the property, and future exploration will certainly document additional wildlife.

Table 2. Significant wildlife habitats at Sharon Town Forest as mapped by the State Wildlife Action Plan (2020).

|                              |        | - ( )               |
|------------------------------|--------|---------------------|
| Habitat Type                 | Acres* | Percent of Property |
| Grassland                    | 0.2    | <0.1%               |
| Hemlock-hardwood-pine forest | 881.3  | 95.8%               |
| Northern forested swamp      | 1.7    | 0.2%                |
| Open water                   | 0.5    | 0.1%                |
| Peatland                     | 0.7    | 0.1%                |
| Temperate forested swamp     | 0.3    | <0.1%               |
| Wet meadow/shrub wetland     | 33.8   | 3.7%                |

<sup>\*</sup> Note: acreage calculations in ArcGIS yielded a property size of 918.5 acres, which differs from the stated property size (891 acres) in Town of Sharon documents.

While generally accurate, field surveys revealed several forested wetlands missing from the SWAP's dataset. This included a modest 6-acre northern forested swamp located southwest of the junction of Milt Street Trail and Sullivan Loop Trail (see Figure 17). As such, the stated acreages in Table 2 provide an approximate breakdown of habitat types across the property.

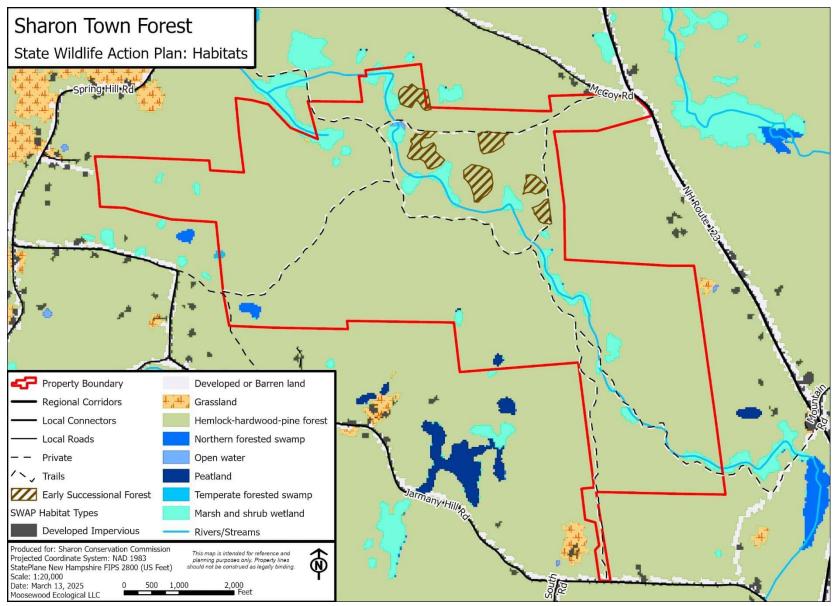



Figure 9. State Wildlife Action Plan habitat types mapped at Sharon Town Forest with young-forest patch cuts added.

#### Grasslands

Grasslands are non-forested areas dominated by grasses, sedges, wildflowers, and other herbaceous plants, with few or no trees. This habitat type supports agriculture, wildlife, and biodiversity. Once more abundant in New Hampshire, grasslands declined after the late 1700s to mid-1800s as abandoned farmland reverted to forest. This shift significantly reduced habitat for grassland-dependent wildlife, particularly species requiring large, contiguous open areas for breeding, such as Bobolink, Upland Sandpiper, and Grasshopper Sparrow. However, many species, including foraging ungulates, nesting turtles, and pollinating insects, still benefit from small or isolated grassland patches.



The log landing near the McCory Road contains Sharon Town Forest's only mini-grassland habitat.

Despite their ecological importance, only 8% of New Hampshire's grasslands are protected under conservation easements (SWAP 2015). At Sharon Town Forest, the SWAP habitat model precited an estimated 0.2 acres of grassland habitat occurring near one of Meadow Brook's wetlands. However, the SWAP modeling process often struggles with grassland identification, and the small SWAP-mapped grassland area at Sharon Town Forest better represents the emergent wetland which is dominated by grasses, sedges, and other herbaceous plants similar in structure to grasslands. The 0.65-acre log landing near the McCoy Road entrance represents the only site that approaches grassland habitat at Sharon Town Forest. Many pollinators, spiders, other invertebrates, and several snakes were observed at this site, as well as numerous plants that grow well in full sunlight.

## Hemlock-Hardwood-Pine Forest

The hemlock–hardwood–pine forest is New Hampshire's most abundant habitat type, covering nearly half of the state's upland area. Dominated by eastern hemlock, eastern white pine, American beech, and red oak, this forest occurs across diverse soils and topography, leading to variations in species composition. In the low-elevation valleys of the southeastern region, it transitions into Appalachian oak – pine forest, while at higher elevations, it shifts to northern hardwood – conifer forest. This habitat plays a vital ecological role, buffering rarer habitat types and supporting 140 vertebrate species, including 15 amphibians, 73 birds, 39 mammals, and 13 reptiles.



Early-successional hemlock-hardwoodpine forest within a patch cut.

At Sharon Town Forest, the SWAP identified 881.3 acres of hemlock – hardwood – pine forest, making it the dominant habitat type at almost 96% of the property. This habitat type also contains about 23 acres of young forest, or early-successional, habitat created through six patch cuts in 2012. As New England's warming climate progresses, we expect that the SWAP's prediction of Appalachian oak – pine distribution at Sharon Town Forest will become more accurate, especially as the property experiences rising temperatures, reduced snowpack, and multiple diseases and pests that stress American beech, eastern hemlock, and white ash, which are a strong presence across much of the property. Despite these changes, the forest's current ecological value remains high, providing essential food, shelter, and habitat connectivity for wildlife.

## Marsh and Shrub Wetlands

Marsh and shrub wetlands, also referred to as 'wet meadow/shrub wetlands' by the SWAP, include three wetland types: emergent marshes (featuring aquatic plants like cattails and water lilies), wet meadows (dominated by grasses and sedges), and scrub-shrub wetlands (supporting shrubs and young trees). These habitats often develop after beavers abandon ponds or in areas with stable groundwater levels. Wetlands provide critical ecological functions, such as filtering pollutants, controlling floods, cycling nutrients, and moderating climate change impacts. Wetlands with multiple subtypes are particularly rich in biodiversity.



An old beaver pond, now a wet meadow, supports many herbaceous wetland plants.

Marsh and shrub wetlands cover about 3% (154,000 acres) of New Hampshire's landscape, with 27% of this area protected by conservation easements. These wetlands support over 100 vertebrate species, including 18 of conservation concern, which rely on wetlands for foraging, nesting, breeding, and shelter. At Sharon Town Forest, approximately 33.8 acres of marsh and shrub wetlands are present, making up about 3.7% of property. Good examples of this habitat type can be viewed from the Sullivan Loop Trail at its northern crossing of Meadow Brook. The Meadow Brook Trail also passes several wet meadows and shrub wetlands. While these wetlands comprise just a small percentage of the overall property, they contain a very high proportion of the Sharon Town Forest's biodiversity.

# **Open Water**

In New Hampshire, lakes and larger ponds provide recreational opportunities and support diverse aquatic wildlife and plants. Species like amphibians, aquatic reptiles, waterfowl, and raptors such as Bald Eagles and Ospreys depend on open water during various life stages. This habitat also sustains a range of aquatic organisms, including plants, macroinvertebrates, zooplankton, and bacteria, forming the foundation of the food web. Open water habitats are classified into cold-water and warm-water lakes and ponds, each supporting specific fish and plant communities depending on nutrient levels and water depth.



Unmaintained beaver dams still retain some small ponds along Meadow Brook.

Open water areas are generally lacking at Sharon Town Forest, especially since American Beavers did not appear to be actively maintaining any dams during the 2024 field season. However, about 0.5 acres of open water remain in two downstream portions of older beaver ponds. This acreage likely fluctuates due to beaver activity and rainfall within the Meadow Brook watershed. The SWAP does not specifically classify the areas of open water on the Sharon Town Forest property as either cold or warm water, likely due to data gaps or modeling uncertainty. Visual and biological assessments reveal that the relatively shallow depth of these inactive beaver ponds probably limits its suitability for cold-water species like Eastern Brook Trout, which may find shelter in any of Meadow Brooks's cooler, canopy-covered, and invertebrate-rich sections. New Hampshire Fish and Game periodically conducts fish surveys in a section of Meadow Brook near Spring Hill Road, and Eastern Brook Trout have been detected by every survey, the most recent one taking place in 2019. Eastern Brook Trout, particularly smaller individuals, likely swim upstream through Sharon Town Forest, which provides critical protections and supporting habitat for this species of conservation concern.

## Peatland

Peatlands are open wetland habitats dominated by shrubs, sedges, and sphagnum mosses, which over time decompose and develop carbon-dense peat soils. Peatlands form in sites with limited to no surface water input and their pH ranges from highly acidic and nutrient-poor to circumneutral and nutrient-enriched. "Quaking" bogs, where a thin mat of sphagnum moss floats on the water surface, are an uncommon yet familiar type of peatland to some. Within the Monadnock Region, peatlands can occur in isolated basins, or occupy the shallow end of larger wetlands or

shallow ponds. Most peatlands in the region present acidic (low pH) growing conditions, which strongly influences their plant composition.

Typical plants associated with poor to medium nutrient peatlands include insectivorous pitcher plants and sundews, diverse sedge communities, mosses, highbush blueberry, mountain holly, speckled alder, sheep laurel, bog rosemary, and forbs such as bog aster and bog goldenrod. Fifty-four rare plants are supported by peatlands state-wide, including dwarf huckleberry, several rare sedges, and rare orchids. Associated uncommon wildlife species of note include the Ringed Bog Haunter dragonfly, Palm Warbler, and Eastern Ribbon Snake. At Sharon Town Forest, the SWAP



A small peatland near Meadow Brook with spoonleaf sundew, a carnivorous plant, and water-loving sphagnum mosses.

mapped about 0.7 acres of small peatlands along the property's southern boundary. While these peatlands are too small to sustain many of the rare plants and wildlife associated with peatlands elsewhere within the New Hampshire, they help contribute to the Town Forest's overall biodiversity.

# Temperate and Northern Forested Swamps

Northern swamps, primarily found from the White Mountains northward and at higher elevations in southwestern New Hampshire, are forested wetlands typically dominated by black or red spruce. These swamps frequently surround bogs or fens and may represent the final stage of succession from open peatlands to forested peaty wetlands. Black spruce peat swamps, common in central and northern New Hampshire, typically form in stagnant basins with poor drainage, especially where seeps emerge at the groundwater-surface interfaces. These sites may contain prime habitat for many amphibians, including Four-toed Salamanders. Threats to these swamps include habitat loss due to development—



Eastern hemlock, red ample, and cinnamon fern grow readily in several forested swamps at Sharon Town Forest.

approximately 950 acres of wetlands were lost in New Hampshire between 2004 and 2015—as well as fragmentation from roads and climate-driven shifts in species composition. Northern swamps cover about 36,000 acres, or roughly 1% of New Hampshire's land area, and only 34% of this habitat was protected as of 2015.

Both northern and temperate swamps are similar in that both wetlands are characterized by a forest structure. However, the more southern temperate swamps typically present high concentrations of red maple and eastern hemlock. Temperate forested swamps often support an understory of ferns, northern highbush blueberry, and winterberry, along with common wetland

species including cinnamon fern and sphagnum mosses. When water levels are sufficiently deep, often in hollows formed by fallen trees, these swamps can provide critical breeding habitat for vernal pool species. Temperate swamps cover approximately 92,000 acres in southern and central New Hampshire and form in low-lying basins where groundwater maintains saturated, organic soils. About 22% of temperate forested swamps are protected on lands with conservation easements.

At Sharon Town Forest, the SWAP identified 0.3 acres of temperate forested swamp located along the southwestern property boundary and 1.7 acres of northern forested swamp located primarily in a single large patch also in the southwestern section. Both sites contain vernal pools. Other forest swamp locations, minimally captured by the SWAP habitat model, occur at the wetland-upland transition zone of several of Sharon Town Forest's marsh and shrub wetlands associated with Meadow Brook. Additionally, multiple small and seasonally saturated or seepy forested areas resembling temperate swamps were observed at Sharon Town Forest during this study and these locations were not captured by SWAP modeling but still provide significant habitat value.

## Vernal Pools

Vernal pools are unique wetlands critical for certain amphibians, including Wood Frogs and Spotted Salamanders, as well as reptile species of conservation concern like Blanding's Turtle, Spotted Turtle, and Eastern Ribbon Snake. These pools also support unique aquatic macroinvertebrates such as fairy shrimp and fingernail clams. Unlike other wetlands, vernal pools fill with water in the spring, dry out later in the summer, and lack viable fish populations. This unique cycle, along with the absence of permanent inlet or outlet streams, is essential for the survival of vernal pool obligate species.

For vernal pools to remain as functional habitats for the species that depend on them, these



This vernal pool at Sharon Town Forest contained an estimated 42,000-126,000 wood frog eggs and 200-400 spotted salamander eggs.

small waterbodies require a forested canopy and significant intact forest surrounding them. Many obligate species spend most of their life cycle up to 1,000 feet from the pool in these upland forests. Vernal pool species also opportunistically utilize forested and shrub wetlands with year-round water for egg laying. Due to their small size and sometimes unpredictable nature, vernal pools have not been mapped at the statewide scale. As a result, this habitat type is best documented through on-the-ground surveys.

#### **BIRD SURVEYS**

Standardized surveys for breeding birds took place on June 4, 5, 11, 20, 21 and July 2 when most local breeding species were expected to have returned from spring migration and before birdsong waned later in the summer. Sampling occurred within earshot of all habitat types present at Sharon Town Forest, and 26 point-count stations were spaced at least 250 meters apart to reduce double-counting of individual birds. To maximize detection of breeding songbirds, surveys occurred on calm mornings with no precipitation and ended no later than three hours after sunrise. Each bird survey sampled approximately one third of the point-count stations, for a total of two surveys per station during the breeding season. All birds confidently identified by sight or sound were recorded during a 10-minute observation window and assigned a behavior breeding code. In addition to these standardized surveys, all birds detected during non-avian surveys or other site visits were incidentally noted.

Over the course of the 2024 field season, we documented 75 bird species at Sharon Town Forest. Breeding bird surveys detected 55 species, whereas incidental observations across spring, summer, and autumn contributed the remaining 20 species. This combined list includes 23 species of conservation concern whose populations are declining within New Hampshire, the Northeast, or range-wide. American Goshawk, Barn Swallow, Common Grackle, and Rose-breasted Grosbeak were only noted as flyovers during the breeding bird surveys, yet may breed on the property in some years given its habitat suitability for these species. All other species exhibited evidence of at least possible breeding behavior at Sharon Town Forest.

Two species, the Canada Warbler and Chimney Swift were flagged as a species of conservation concern in each of the five reports and assessments checked. Canada Warblers depend on mixed coniferous-deciduous forests with a shrubby and mossy understory, often located near water. Range-wide, this species has declined by 62% since 1966 due to loss of forested wetlands and loss of shrubby understories due to White-tailed Deer browse and some forestry practices that remove this understory component. At Sharon Town Forest, multiple individuals were heard singing from forested wetlands near Meadow Brook and its tributary that flows near the Milt Street Trail. Chimney Swifts, by comparison, nest primarily in chimneys but sometimes in hollow trees and caves in rural areas. These aerial insectivores have declined by 67% since 1966, mostly due to loss of suitable nest sites and diminishing populations of flying insects.

Table 3. Bird species of conservation concern detected at Sharon Town Forest. Probable and confirmed breeders marked with an \*.

| Common Name                   | <b>Conservation Status</b> | Common Name            | <b>Conservation Status</b> |
|-------------------------------|----------------------------|------------------------|----------------------------|
| American Goshawk              | 1, 4, 5                    | Northern Flicker       | 1                          |
| Barn Swallow                  | 1                          | Ovenbird*              | 1                          |
| Blackburnian Warbler*         | 1                          | Prairie Warbler*       | 2, 3, 4, 5                 |
| Black-throated Blue Warbler*  | 1                          | Purple Finch*          | 1, 4, 5                    |
| Black-throated Green Warbler* | 1                          | Rose-breasted Grosbeak | 1                          |
| Brown Creeper*                | 1                          | Ruffed Grouse*         | 1, 4, 5                    |
| Canada Warbler*               | 1, 2, 3, 4, 5              | Scarlet Tanager*       | 4, 5                       |

| Common Name             | <b>Conservation Status</b> | Common Name               | <b>Conservation Status</b> |
|-------------------------|----------------------------|---------------------------|----------------------------|
| Chestnut-sided Warbler* | 1                          | Veery*                    | 1, 4, 5                    |
| Chimney Swift           | 1, 2, 3, 4, 5              | Wood Duck                 | 1                          |
| Common Grackle          | 2                          | Yellow-bellied Sapsucker* | 1                          |
| Eastern Towhee*         | 4, 5                       | Yellow-billed Cuckoo      | 2                          |
| Eastern Wood-Pewee*     | 1                          |                           |                            |

Key to conservation status identifiers:

- 1 Bird Conservation Region 14 assessment (Dettmers, 2006)
- 2 Partners in Flight assessment (Rosenberg et al., 2016)
- 3 North American Bird Conservation Initiative assessment (NABCI, 2022)
- 4 New Hampshire State Wildlife Action Plan (NHFG, 2015)
- 5 New Hampshire Audubon assessment (Hunt, 2020)

Widely distributed species that occurred at a high percentage of point-count stations across Sharon Town Forest included many common forest songbirds of the Monadnock Region. The property's most widespread species are well-adapted to mixed conifer-hardwood forests and four species were detected from all 26 point-count stations: Black-capped Chickadee, Blue Jay, Ovenbird, and Red-eyed Vireo (Figure 10). Conversely, less-widely distributed species represented more secretive birds, such as Ruby-throated Hummingbirds and Barred Owls, and species that associate with specific or limited habitat types, such as Canada Warblers (inhabit forests or forested wetlands with a dense conifer understory), Chipping Sparrows (inhabit dry pine forests and residential areas), and Swamp Sparrows (inhabits emergent wetlands with moderate to low shrub cover).

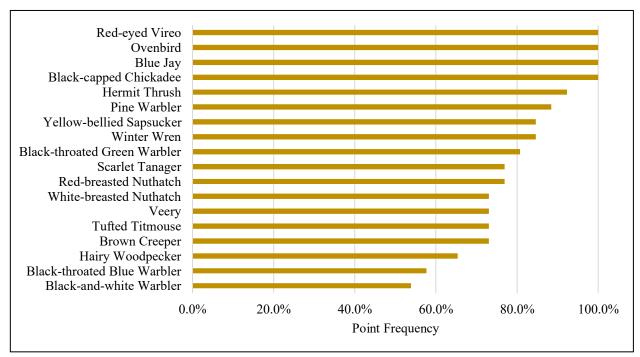



Figure 10. Point frequency of breeding-season bird species detected at more than 50% of point-count stations within Sharon Town Forest.

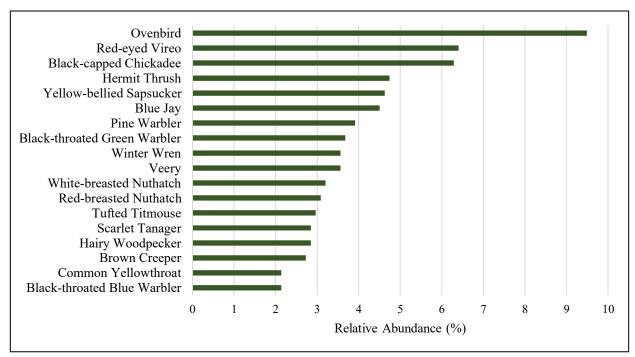



Figure 11. Relative abundance of breeding-season bird species detected at Sharon Town Forest.

Complimentary to evaluating each species' distribution throughout Sharon Town Forest, relative abundance offers a different perspective by calculating the percentage of all total detected birds represented by each species. In other words, birds with a higher relative abundance make up more of the overall bird population than those with a lower relative abundance. At Sharon Town

Forest, loud-singing and ground-nesting Ovenbird was the property's most abundant species and was documented throughout the forest's uplands (Figure 11). Multiple Ovenbird nests with eggs were encountered over the course of the breeding season. Other habitat generalists within the Monadnock Region constituted the next five most-abundant species with a relative abundance of more than 4%: Red-eyed Vireo, Black-capped chickadee, Hermit Thrush, Yellow-bellied Sapsucker, and Blue Jay.

The high degree of overlap between abundant species and widely-distributed species underscores the widespread availability of second-growth hardwood and mixed hardwood-conifer forests typical of the Monadnock Region. Multiple species of conservation concern demonstrated healthy populations at Sharon Town Forest. Furthermore, the presence of multiple Scarlet Tanager pairs, a species of greatest conservation need in New Hampshire, reflected the property's large unfragmented setting; Scarlet Tanagers require large tracts of interior forest for successful breeding. Some of Sharon Town Forest's least abundant breeding season species included Alder Flycatchers, Gray Catbirds, Canada Geese, and Eastern Phoebes.



Broad-winged Hawks and Ovenbirds (eggs pictured) nest at Sharon Town Forest.

#### MAMMAL SURVEYS

Due to the inventory timeline for spring through autumn, the primary mammal survey methodology consisted of wildlife camera traps rather than snow tracking. Designed to capture large and medium-sized mammals as they move throughout Sharon Town Forest, biologists deployed five cameras from early May to late September, 2024. During this time, all cameras were periodically moved to cover as much of the property as possible. Each camera was positioned one to two feet above ground and secured to trees facing the intended capture area, typically a wetland edge, wildlife trail, recreation trail, or stone wall opening where wildlife activity was expected or detected prior to deployment. All cameras were active 24 hours a day and set to record with four successional pictures or a 30-second video when triggered by motion in their field of view. A secondary mammal survey type consisted of visual encounters of mammals and their signs (e.g., scat, tracks, chew marks, hair) observed during in-person site visits.

Overall camera trapping efforts yielded 712 captures of 27 total species (17 mammals, 9 birds, and 1 spider). White-tailed Deer, Eastern Chipmunk, American Red Squirrel, and Eastern Gray Squirrel were recorded on 251, 125, 99, and 54 instances respectively. Long-tailed Weasel, North American Porcupine, American Black Bear, Bobcat, Common Raccoon, and Coyote rounded out the top ten most-observed species with 13 or more observations each. Visual encounters and observed mammal signs did not result in any different species than the cameras captured.

Sharon Town Forest provided many quality observations of New Hampshire's larger mammals. One observation included a mother and calf moose, and moose tracks and scat were abundant in some areas. Also captured on our cameras were no fewer than four distinct adult black bears, one of which was a female with two young cubs. Healthy bobcat and coyote were also observed throughout the property. These observations indicate that Sharon Town Forest



A mother black bear and two cubs photographed at Sharon Town Forest in late July.





Bobcats (left) and coyotes (right) frequently utilized Sharon Town Forest's natural and human-created pathways such as stone walls and trails.

provides important habitat and food source to many species and individuals. Given the expected ranges of the species documented, it can also be assumed the property is well connected to the surrounding area that also provides important resources for the area's wildlife. This assumption is supported by the SWAP labeling much of Sharon Town Forest as highly ranked or supporting habitat. The property also has numerous wildlife corridors leading to and from it, linking Sharon Town Forest as part of an integral network connecting vital habitats in the region.

Our survey efforts did not extend to include bats and small mammals, and occasional observations of deer mice (*Peromyscus* sp.) represented most of the small mammal sign opportunistically observed during the study. While undocumented during the survey period, other small rodents such as voles, shrews, flying squirrels, and additional mice species likely inhabit Sharon Town Forest. This is supported by the numerous predator species present that typically prey on small rodents. Bats are another mammal group expected on the property. New Hampshire is home to eight species of bats, one of which are state endangered and one is federally threatened.

#### REPTILE AND AMPHIBIAN SURVEYS

New Hampshire is home to 40 native species of reptiles and amphibians, many of which have restricted geographic ranges within the state. Several at-risk and range-restricted species are known to occur within Sharon, while more widespread species can be found across all elevations, including portions of the White Mountains' alpine zone. To survey for reptile species inhabiting Sharon Town Forest, we employed a series of repeated, direct searches within all habitat types throughout the spring and summer. Surveys included, but were not limited to, counts of basking turtles using a spotting scope or binoculars, temporarily lifting cover objects, walking transects, and stationary observation. All reptile-focused surveys took place on warm, sunny days to improve detectability. Amphibian surveys largely depended on visual encounters sweeps, which took place on warm, humid days, often following rain events to maximize observations of amphibians moving overland and in aquatic habitats. Targeted surveys of potential vernal pools for amphibian egg masses occurred in spring before these isolated pools dried.

Sharon Town Forest exhibits excellent habitat connectivity for amphibians within the property bounds, particularly among its numerous vernal pools and wetland complexes, including emergent marshes, shrub wetlands, and small peatlands, northern forested swamps, and temperate forested swamp. Other important habitat features for reptiles and amphibians found at Sharon Town Forest included abundant leaflitter, thick loamy soils, downed coarse woody material, sun-lit wetland edges, and exposed rocks and logs, each of which provide essential basking, foraging, and sheltering resources.



Smooth Green Snakes, a species of greatest conservation need, depend on the property's habitat mosaic.

Combined, we observed two species of reptiles and seven species of amphibians utilizing the upland or wetland habitats found at Sharon Town Forest. No turtles were observed during the course of this study, but when beaver ponds along Meadow Brook contain more water, they likely attract both Painted Turtles and Common Snapping Turtles. Our surveys observed numerous garter snakes, including a mating pair, and two Smooth Green Snakes, a species of greatest conservation need in New Hampshire.

Most amphibian species detected at Sharon Town Forest are common native inhabitants of New Hampshire: American Bullfrog, Eastern Newt, Eastern Red-backed Salamander, Green Frog, and Spring Peeper. Egg masses of two ecologically-sensitive amphibians, Wood Frogs and Spotted Salamanders, were documented in 22 of Sharon Town Forest's vernal pools. Five additional potential vernal pools exhibited favorable water depths, vegetation, and other characteristics that could support obligate vernal pool species in other years. The combined total of 27 confirmed and potential vernal pools underscores Sharon Town Forest's ecological significance. These often-overlooked, isolated bodies of water provide critical reproductive sites for not only Wood Frogs and Spotted Salamanders, but also fingernail clams and fairy shrimp, the latter of which were also observed in several of Sharon Town Forest's pools.







Left to right: Wood Frog, Green Frog, and Red-spotted Newt represent three of the more abundant amphibian species at Sharon Town Forest.

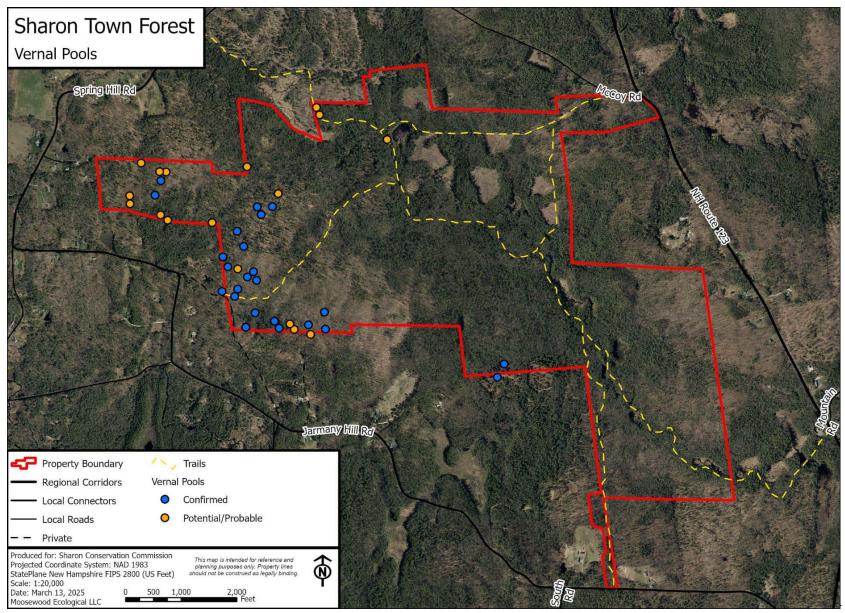



Figure 12. Confirmed and potential vernal pools at Sharon Town Forest.

#### **INVERTEBRATES**

While no standardized or targeted surveys were conducted for invertebrates at Sharon Town Forest, it was hard not to document these often photogenic or poorly-studied creatures. Our observations of 356 species of invertebrates only begin to scratch the surface of this biodiverse group, and additional surveys could yield many hundreds more species. While insects represented the bulk of recorded invertebrates with 321 species, we also identified 30 spiders and mites, three mollusks, one nematode, and a fairy shrimp.

Relative to the sheer biodiversity of invertebrates, very few species have been assessed for potential listing as a species of conservation concern. Butterflies, dragonflies, damselflies, tiger beetles, and a few other well-studied insect groups are the exception to this trend. As more data becomes available through research projects, including community science databases like iNaturalist, initial working groups have been formed to begin conservation status assessments. Data points from this study that were submitted to iNaturalist are already helping inform potential inclusion of several insect species within the forthcoming 2025 update to the New Hampshire State Wildlife Action Plan.

Only one of the currently state-listed invertebrate species of greatest conservation need, the Yellowish Cuckoo Bumble Bee, was observed at Sharon Town Forest. We photographed an adult male bee pollinating common milkweed (Asclepias syriaca) in the log landing near McCoy Road during the July 6 bioblitz. Repeated surveys of Meadow Brook's wetlands detected a robust population of Two-spotted Skippers within four separate emergent wetlands. This species is newly proposed as a species of greatest conservation need in New Hampshire. Statewide surveys are still ongoing, yet Sharon Town Forest's population of this uncommon butterfly may be one of the largest in New Hampshire. While undetected at the property, Monarchs, likely use the property for nectaring resources during fall migration and may lay eggs on common milkweed plants found in the patch cut areas and the McCoy Road log landing. Monarchs are a species of greatest conservation need in New Hampshire and eastern migratory subspecies has been petitioned for listing on the federal endangered species list due to >80% population decline since the 1990s.

Sharon Town Forest also hosts four invertebrate species of regional conservation concern, whose populations are fragmented and declining primarily due to habitat loss. They are the Silver-bordered Fritillary



Yellowish Cuckoo Bumble Bees are unlike common bumble bees in that they usurp the nests of other bees and exploits the worker bees to feed her and her developing young.



The property hosts many Two-spotted Skippers, a rather uncommon butterfly.

(butterfly), Harris's Checkerspot (butterfly), Southern Pygmy Clubtail (dragonfly), and Elfin Skimmer (North America's smallest dragonfly). Beyond the relatively well-studied butterflies, dragonflies, and damselflies, much less data has been collected on other invertebrate groups by scientists and naturalists. By reporting field observations of invertebrates to iNaturalist, the Sharon Town Forest ecological inventory and stewardship plan actively contributed natural history information to the scientific consensus for dozens of species.



Four species of regional conservation concern (clockwise from top left (Silver-bordered Fritillary, Harris's Checkerspot, Southern Pygmy Clubtail, and Elfin Skimmer.

Numerous invertebrates documented through this effort represented first-known records for Hillsborough County, New Hampshire, and even New England, helping fill spatial gaps in the collective understanding of these species' geographic distributions (Table 3). Within the framework of this project, first records were determined by searching the publicly-accessible iNaturalist database, Global Biodiversity Information Facility database, and New Hampshire Dragonfly Survey (Hunt 2012). Prior records for some species may exist in private collections, personal lists, or other unpublished resources. For the time being, it remains unknown if these noteworthy species are truly rare, uncommon, or simply overlooked common species. More research is needed regionally to determine species distributions, population trends, and conservation statuses.

Table 4. Partial list of notable insects observed at Sharon Town Forest. Noteworthiness acronyms used: NE = New England, NH = New Hampshire, HC = Hillsborough County.

|                                |                     | Taxonomic   |                                             |
|--------------------------------|---------------------|-------------|---------------------------------------------|
| Common Name                    | Scientific Name     | Group       | Noteworthiness                              |
| Eastern Red Damsel             | Amphiagrion saucium | Damselflies | New record for Sharon;<br>Uncommon in NH    |
| Silver-bordered<br>Fritillary  | Boloria myrina      | Butterflies | Regional species of conservation concern    |
| Yellowish Cuckoo<br>Bumble Bee | Bombus flavidus     | Bees        | NH Species of Greatest<br>Conservation Need |
| Superb Jewelwing               | Calopteryx amata    | Damselflies | Uncommon in NH                              |
| Curved Halter Moth             | Capis curvata       | Moths       | First public record for HC                  |
| Harris's Checkerspot           | Chlosyne harrisii   | Butterflies | Regional species of conservation concern    |

| Common Name                   | Scientific Name          | Taxonomic<br>Group | Noteworthiness                                                             |
|-------------------------------|--------------------------|--------------------|----------------------------------------------------------------------------|
| Maine Leaf Beetle             | Chrysomela mainensis     | Beetles            | First public record in southern NH                                         |
| Charcoal Deer Fly             | Chrysops carbonarius     | Flies              | First public record in HC                                                  |
| Macquart's Deer Fly           | Chrysops macquarti       | Flies              | First public record for HC                                                 |
| Tubercle-faced Reed<br>Beetle | Donacia tuberculifrons   | Beetles            | First public record in NE                                                  |
| Three-spotted Concealer       | Eido trimacuella         | Moths              | First public record in HC                                                  |
| Goldcap Moss-Eater            | Epimartyria auricrinella | Moths              | First public record in HC                                                  |
| Bog-dwelling Drone Fly        | Eristalis cryptarum      | Flies              | First public record in southern NH                                         |
| Two-spotted Skipper           | Euphyes bimacula         | Butterflies        | Proposed species of greatest conservation need in NH                       |
|                               | Fitchia aptera           | True Bugs          | First public record in NH                                                  |
|                               | Idiodonus kennicotti     | True<br>Hoppers    | First public record for NH                                                 |
| Southern Pygmy<br>Clubtail    | Lanthus vernalis         | Dragonflies        | First public record for HC;<br>regional species of conservation<br>concern |
| Bilobed Looper Moth           | Megalographa biloba      | Moths              | First public record in HC                                                  |
| Elfin Skimmer                 | Nannothemis bella        | Dragonflies        | New record for Sharon; regional species of conservation concern            |
| Gracile Nomad                 | Nomada gracilis          | Bees               | First public record in HC                                                  |
|                               | Ochterus banksi          | True Bugs          | First public record in northern NE                                         |
| Metallic Reed Beetle          | Plateumaris metallica    | Beetles            | First public record in HC; second public record in NH                      |
| Red Aquatic Leaf Beetle       | Plateumaris rufa         | Beetles            | First public record in HC                                                  |
| Shoemaker's Reed<br>Beetle    | Plateumaris shoemakeri   | Beetles            | First public record in HC                                                  |
| Sober Renia Moth              | Renia sobrialis          | Moths              | First public record in HC                                                  |
|                               | Rhopalomyia hirtipes     | Flies              | First public record in NH                                                  |
| Dark Brown Scoparia<br>Moth   | Scoparia penumbralis     | Moths              | First public record in HC                                                  |
| Sedge Billbug Weevil          | Sphenophorus costipennis | Beetles            | First public record in NH; third public record in northern NE              |
| Eastern Least Clubtail        | Stylogomphus albistylus  | Dragonflies        | New record for Sharon                                                      |
|                               | Trialeurodes pergandei   | Flies              | First public record in northern NE                                         |

Not all, but many of Sharon Town Forest's noteworthy insects depend on habitats associated with Meadow Brook. This includes Meadow's Brook high-quality waters, varied riverine substrate, and diverse vegetation within adjacent emergent and shrub wetlands. Many of these wildlife resources are threatened by expanding concentrations of glossy buckthorn.



New England's first public record of Donacia tuberculifrons.

#### FOREST PEST AND PATHOGENS

As with many forests in southern New Hampshire, one or more forest pests and pathogens negatively impact the health of key tree species. Forest pests, often an insect or nematode, and pathogens, like some fungi and diseases, constitute a major threat to New Hampshire's forests, especially when the threat is non-native and lacks biological or climatic controls. For example, Emerald Ash Borer (*Agrilus planipennis*) has rapidly spread throughout New Hampshire's southern nine counties since it was first detected in Concord in 2013, and this east-Asian species is well-adapted to New Hampshire's climate. The larvae of this small beetle bore into and consume the living bark tissue of ash trees, leading to widespread ash die-off. In forest stands where high concentrations of Emerald Ash Borers have been present for five or more years, ash canopy mortality can reach 100%. According to data from NH Forest Health Bureau, Emerald Ash Borers were first reported from Sharon in 2021. At Sharon Town Forest, surveys uncovered several forest pathogens including Emerald Ash Borer. Many white ash trees at the property displayed symptoms borer infestation while others have already deceased. A modest number of healthy white ash trees remain for the time being.

Other non-native pests and pathogens stressing trees at Sharon Town Forest include Elongate Hemlock Scale (*Fiorinia externa*), Hemlock Woolly Adelgid (*Adelges tsugae*), Beech Bark Disease (*Neonectria faginata*), and Beech Leaf Disease (*Litylenchus crenatae*). As their names imply, eastern hemlock and American beech are the affected species. Sharon Town Forest contains thousands of individual hemlock and beech trees and saplings. Hemlock Woolly Adelgid and Elongate Hemlock Scale are two nearly-microscopic insects that feed on sap produced by host trees. Either insect can kill a host plant within 10 years, and this process is sometimes hastened if both pests are present. Beech Bark Disease affects the bark of a high proportion of beech trees at Sharon Town Forest. This disease stresses affected trees and reduces the likelihood of reaching a mature age. Fortunately, the canker fungus does not quickly kill trees.

A new threat, Beech Leaf Disease, may pose a more serious threat to the property's beech trees, as this potentially wind-dispersed nematode has explosively spread in New Hampshire since its introduction in 2022. This pathogen appears to spread on American beech leaves in the understory and midstory, killing the leaves partway through the year. As a result, affected trees suffer from reduced rates of photosynthesis, leading to poor nutrition and reduced carbon sequestration which can result in death of individuals in about five years. At other sites in New England where Beech Leaf Disease has been present in a forest for 3 or more years, some beech-dominated midstories and understories have expressed 80-100% defoliation, leading to a significant reduction of beech regeneration. State and Federal forest scientists are unsure how Beech Leaf Disease and related pests will impact New Hampshire forests over the long term.

Rather than suffering widespread impacts from a non-native species, the insect currently causing the most forest change at Sharon Town Forest is the Hemlock Looper moth. These medium-sized, tan moths are easily visible in September and October after caterpillars have metamorphosed into butterflies. Native to North America, Hemlock Looper populations cycle through boom-and-bust years as a technique to evade the constant predation pressure from forest songbirds. Population spikes can occur as frequently as every 11 to 15 years, and these spikes can cause widespread defoliation across entire hemlock stands, as was the case at Sharon Town Forest in 2021-2022 when an estimated 275 acres of hemlock forest and mixed-hemlock forest were

affected. Hemlock Looper outbreaks can last up to three or four years, and no practical control measures exist.

Fortunately, natural disturbances such as this also provide many benefits to large forested ecosystems. First, the once shadow-laden forest floor now receives abundant sunlight due to the defoliated hemlock canopy. Hardwoods, primarily birches and maples, have formed dense patches of regenerating seedlings. Canopy openings like these typically increase understory vascular plant diversity. Second, new gaps in the forest canopy and midstory increase structural heterogeneity within the property bounds and the landscape. Heterogeneous forests, characterized by varied vertical and horizontal structure and diverse tree species, significantly contribute to a forested ecosystem's long-term biodiversity, overall ecological health, and climate resiliency. Third, as dead-standing hemlocks fall and decompose, sequestered carbon remains on-site and is cycled into Sharon Town Forest's soils. Regenerating trees within the affected hemlock stands also rapidly intake additional carbon from the atmosphere, which helps improve air quality and combat climate change. Fourth, structural heterogeneity and large downed trees are key characteristics of old growth forests. By allowing natural processes to take their course within the affected stands, the forest will continue progressing towards old growth and thereby expand upon the scattered distribution of this rare forest type in New England.

The forest communities of Sharon Town Forest will change in response to the combined pressures of a changing climate and forest pests and pathogens. Additional research and monitoring can better answer the questions of how, where, and how much the forest will change at this important property. Yet in the coming decades, we predict that white ash and eastern hemlock will decline significantly and American beech regeneration may slow. In response, impacted forest communities may shift towards a higher abundance of oak, birch, and maple. In the long-term as the climate continues to warm, cold-adapted species such as balsam fir, red spruce, and yellow birch will likely gradually be replaced by oaks, hickories, and other more southern species better adapted to projected future conditions.



Hardwood seedlings robustly regenerate the understory of Sharon Town Forest's low-elevation hemlock stands following the Hemlock Looper outbreak.

## LANDSCAPE CONTEXT

#### UNFRAGMENTED LAND BLOCKS

Anthropogenic development divides our landscape into discrete, fragmented blocks of natural land cover. This division of land occurs when roadways are created to support our built infrastructure, including residential, commercial, and industrial developments. The continuous development of new roadways and other projects further fragments large forested blocks, which eventually creates a mosaic of smaller unfragmented forest blocks that can no longer support robust wildlife and plant populations. Many types of wildlife depend on large unfragmented lands for survival and successful reproduction, including North American River Otters, American Black Bears, Bobcat, American Goshawk, and even small songbirds such as the Ovenbird.

Adapting a landscape-scale perspective is critical when assessing the impact of habitat fragmentation, as natural resources and processes (e.g., wildlife dispersal and migration) do not observe political boundaries and the pattern and distribution of unfragmented land blocks is rarely observed at the parcel scale. Thus, it is important to consider not only the area immediately adjacent to the Sharon Town Forest, but also the surrounding landscape. This approach provides a better perspective for understanding potential species presence and ecological integrity of the local landscape in light of current development patterns. For the purposes of this project, fragmenting features were defined as all state, town, and local roads, and these features received a buffer of 500 feet to encompass the area within which buildings are most often constructed relative to roadways. Lacustrine, or lake-like, wetlands were also excluded to better capture the upland habitats preferred by most large-bodied, wide-roaming vertebrates. Class VI roads, private roads, and driveways present fewer risks to wildlife, and were not considered significant fragmenting features. The remaining areas denote relatively unfragmented blocks of land that exhibit a variety of natural habitats such as forests, wetlands, streams, and ponds. In some instances, vegetated humanmodified areas beneficial to some wildlife (e.g., hayfields and other agricultural fields) are also included within unfragmented land blocks.

Sharon Town Forest stretches horizontally across an unfragmented land block measuring 1,844 acres in size (Figure 13). Field surveys detected a diverse assemblage of species, many of which require large intact natural habitats free of human disturbance. While not insignificant, unfragmented habitat blocks of this size typically lack enough resources to fully support Bobcats, North American River Otters, American Black Bears, Coyotes, Fisher, Moose, and other areasensitive species found at Sharon Town Forest. For these species, the unfragmented habitat block associated with the study area plays a critical role in patchworking together the minimum area required to meet their basic biological needs amidst an increasingly fragmented landscape. The presence of numerous area-sensitive species at Sharon Town Forest underscores the importance of this biological stronghold. Future residential development around the periphery of the contiguous land block associated with Sharon Town Forest would gradually chip away unfragmented land available to wide-roaming species. Conserving existing wildlife corridors between nearby large patches of unfragmented habitat will help protect the property's long-term attractiveness to Moose, Bobcat, and many other species that visit on a regular basis.

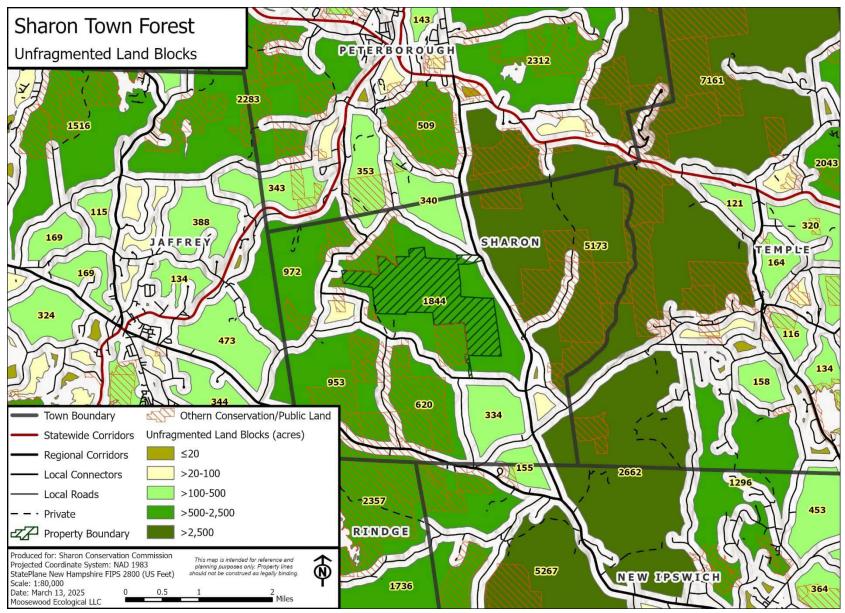



Figure 13. Unfragmented land blocks in the greater Sharon area.

#### WILDLIFE CORRIDORS

Large unfragmented landscapes provide wildlife with unimpeded access to critical resources and the ability to safely move to new territories. This connectivity is imperative for the long-term survival of many wildlife populations, especially such wide-roaming species as Moose, American Black Bear, Coyote, Bobcat, North American River Otter, Mink, and Fisher. Connectivity hotspots can take many forms, although various species often seek natural pathways along wetland edges, riverbanks, other riparian areas, ridgelines, field edges, and even some recreational trails and utility rights-of-way. Wildlife corridors are not only significant for mammals but are equally important for amphibians, turtles, fish, and other aquatic species. For aquatic and semi-aquatic species, wildlife corridors typically follow streambeds, rivers, and connected wetlands. Organisms utilizing these natural riverine corridors often must navigate frequent road crossings, where poorly-designed culverts can restrict or prevent safe passage.

To raise awareness about wildlife corridors and help prioritize the protection of key corridors, New Hampshire Fish and Game modeled primary and secondary wildlife corridors statewide. They used 16 focal species for their analysis, capturing the movement habits of several turtle species, snakes, mustelids (members of the weasel family including North American River Otter, Mink, and Fisher), lagomorphs (rabbits and hares), North American Porcupine, Bobcat, American Black Bear, and Canada Lynx. The resulting primary wildlife corridors represent top-scoring linkages for all focal species combined and may benefit multiple wildlife species with a variety of dispersal behaviors, whereas secondary corridors represent top-scoring linkages for each focal species when considered individually.

According to statewide modeling by New Hampshire Fish and Game, Sharon Town Forest protects 403 acres, or 62.6%, of a 644-acre priority habitat block associated with Meadow Brook's Tier 1 and Tier 2 habitats (Figure 14). This priority block reflects the area's unfragmented habitat and widespread presence of Tier 1 and Tier 2 habitats insulated by the wide border of undeveloped Tier 3 forests. The Town Forest provides important connectivity to wildlife traveling across Sharon, especially large-bodied mammals traversing between Annett State Forest in Rindge and protected forests along the Wapack Range in eastern Sharon and western Temple.

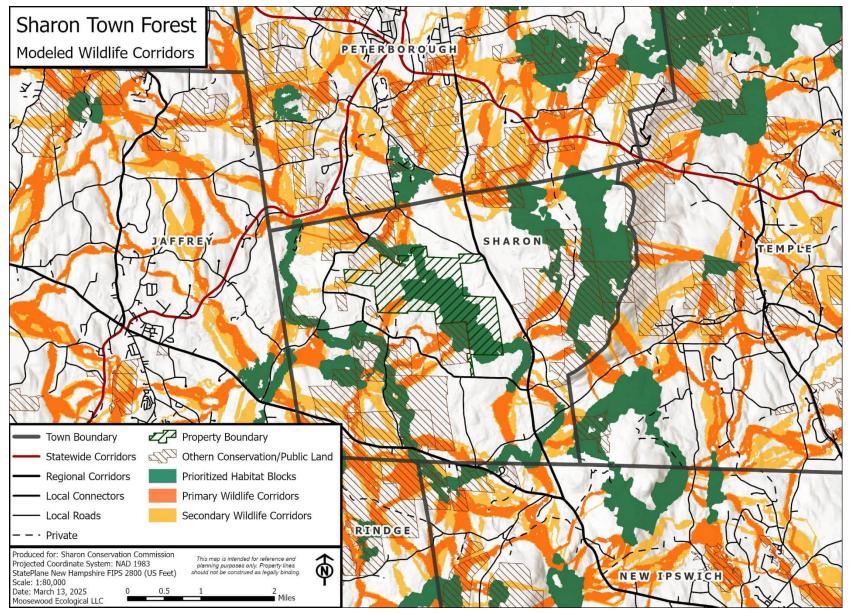



Figure 14. New Hampshire Fish and Game's modeled wildlife corridors and priority habitat blocks for the greater Sharon area.

#### WILDLIFE HABITATS RANKED BY ECOLOGICAL CONDITION

In addition to evaluating wildlife habitats across the entire state, the New Hampshire State Wildlife Action Plan also identified where these habitats exist in the best ecological condition based on biodiversity, habitat arrangement, and minimal human impact. This analysis, updated every five years (most recently in 2020), ranks habitats into four tiers to guide conservation priorities:

- Tier 1: Highest Ranked Habitat in New Hampshire The top 15% of each habitat type, prioritizing rare habitats, known locations of listed species, and exemplary natural communities.
- Tier 2: Highest Ranked Habitat in Biological Region The next highest 30% of habitat within each biological region, excluding areas already in Tier 1.
- Tier 3: Supporting Landscapes The remainder of the top 50% of each habitat type.
- Not Ranked Developed areas, lower-quality natural habitats, and small patches (<1 acre) of high-quality habitat surrounded by development.

All three ranked tiers are significant for wildlife and provide a broad conservation framework. However, finer-scale features of ecological importance (e.g. vernal pools) may not always be reflected in the SWAP's statewide analysis due to data limitations.

At Sharon Town Forest, approximately 44% of the property qualifies as Tier 1 (171 acres) or Tier 2 (235 acres) habitat (Table 5), making it some of the most important habitat in New Hampshire and the Worcester/Monadnock Plateau ecoregion. This ecoregion extends north from Massachusetts's Quabbin Reservoir to Walpole, New Hampshire as well as covering a large swath of land between Worcester, Massachusetts and New Hampshire's Belknap County. Tier 1 and Tier 2 habitats are closely associated with Meadow Brook and adjacent uplands within the Town Forest, recognizing this site's prime ecological condition from a landscape perspective (Figure 15). The SWAP ranked an additional 435 acres of Sharon Town Forest at Tier 3, important supporting landscapes. Sharon's Gridley River and nearby Temple Mountain represents the only other large patches of Tier 1 habitat within Sharon.

Table 5. Acreage of State Wildlife Action Plan habitat tiers at Sharon Town Forest.

| <b>Habitat Tier</b> | Acres* | <b>Percent of Property</b> |
|---------------------|--------|----------------------------|
| 1                   | 171.2  | 18.6%                      |
| 2                   | 234.9  | 25.5%                      |
| 3                   | 434.7  | 47.3%                      |
| Not ranked          | 79.1   | 8.6%                       |

<sup>\*</sup> Note: acreage calculations in ArcGIS yielded a property size of 920 acres, which differs from the stated property size (891 acres) in Town of Sharon documents.

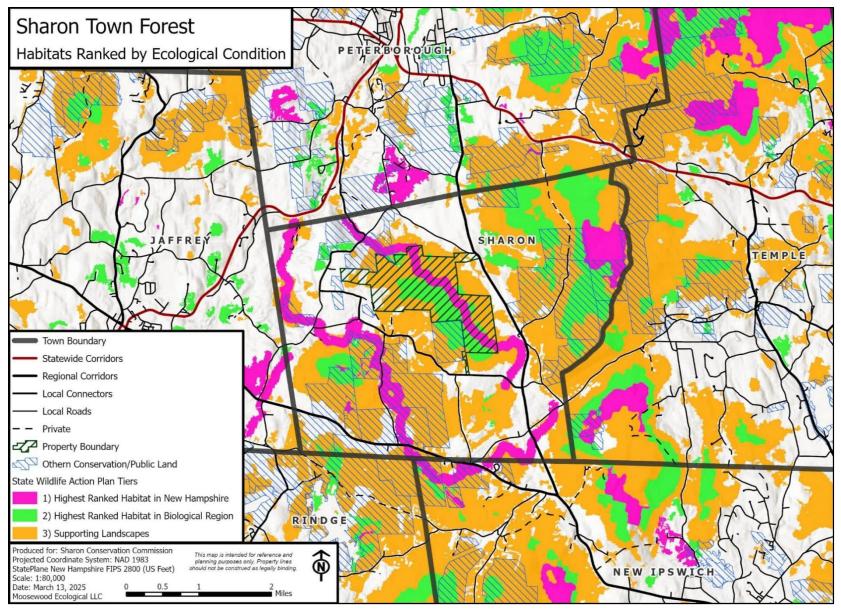



Figure 15. State Wildlife Action Plan habitats ranked by ecological condition in the greater Sharon area.

#### CLIMATE CHANGE AND RESILIENT LANDSCAPES

In response to the changing climate, many communities, organizations, and landowners are now incorporating the concept of resiliency into their proactive planning efforts. The concept of ecological resiliency refers to the capacity of wildlife and plants, and the natural processes and physical conditions they depend on, to sustain change over time. Resiliency studies attempt to predict how landscapes may respond to a changing climate and such studies specific to the Northeast factor in long-term forecasts for extreme temperatures, higher average annual temperatures, shorter winter seasons, increasing intensity and frequency of storms, flooding, and rising sea levels. When it comes to measuring the degree of climate resiliency offered by a landscape, scientists look at three broad characteristics.

The first characteristic, geophysical diversity, measures the diversity of bedrock and surficial geology, soils, elevations, landforms, and water features such as lakes and streams. Geophysical diversity promotes both habitat and species diversity by providing a broad spectrum of ecological conditions and microclimates. In the event of disturbance, either from human activity or weather, landscapes with greater geophysical diversity can recover more quickly than more homogenous landscapes. The second characteristic, connectedness, measures the ability of species to freely move throughout landscapes unimpeded by significant barriers such as major roadways, human development, or anthropogenic features. Connectedness applies to all spatial and temporal scales, from the short, seasonal movements of amphibians seeking vernal pools to centuries-long shifts in the geographic distribution of plants. More resilient landscapes offer a high degree of connectedness through intact, unfragmented landscapes, which better facilitate both near-term and long-term movement of plants and wildlife.

The third characteristic, biological condition, takes into consideration the impact of environmental stressors, including past land use, human development, invasive species, and air and water pollution. Landscapes with fewer of these stressors maintain a higher degree of resiliency, as healthier, less-stressed ecosystems can more efficiently maintain their ecosystem services (e.g., air and water filtration, carbon sequestration, floodwater storage). Biological condition also accounts for the presence of species of greatest conservation need and exemplary natural communities.

In 2016, The Nature Conservancy released their Resilient and Connected Landscapes study, which mapped climate-resilient sites, locations of confirmed biodiversity, intact landscapes, and predicted zones of species movement associated with climate-induced range shifts across eastern North America. This study used these factors to prioritize conservation efforts across a network of climate-resilient sites integrated with connecting corridors. In turn, this process effectively created a blueprint for regional conservation that represents all habitats and gives nature space to adapt. The Nature Conservancy's analysis identified the following concepts and definitions:

• Resilient Area: places buffered from climate change because they contain many connected microclimates that create climate options for species as they respond to climate change (i.e., high geophysical diversity).

- Flow: the gradual movement of species populations over time in response to changing climates (i.e., connectedness). Flow tends to concentrate in the zones and corridors described below.
- Climate Corridor: narrow zone of highly concentrated flow, often along waterways or ridgelines.
- Climate Flow Zone: broad areas of high flow that are less concentrated (diffuse) than in concentrated corridors typically intact forested regions.
- Recognized Diversity: sites with diverse landform types and geophysical settings, known locations of rare species or unique communities based on ground inventory, or sites otherwise known for their current biodiversity value (i.e. high biological condition). Unconfirmed areas may contain the same species.

Resilient sites are projected to retain high-quality habitat and continue to support a diverse array of plants and animals. Areas exhibiting both complex topography and connected land cover represent high-priority locations for conservation as these sites are expected to be of higher value to plants and wildlife in the long term. Fortunately, either knowingly or unknowingly, land trusts and other stakeholders throughout New Hampshire have protected many climate-resilient sites identified by The Nature Conservancy, including Sharon Town Forest. Conservation easements and deed restrictions serve as two tools for land conservation, and they can help ensure that climate-resilient areas continue to provide critical habitat and connectivity for species in a changing climate.

Building upon Sharon Town Forest's ecological significance at local and regional scales, the property's landscape connectivity, variable terrain, natural communities, and wildlife habitats promote a relatively high degree of climate resiliency according to The Nature Conservancy's national assessment. Much of Sharon Town Forest, especially the property's central Meadow Brook drainage overlaps with a nationally-recognized area of high climate resiliency, high climate flow, and recognized biodiversity (Figure 16). The Nature Conservancy's dataset of climate resilient and connected sites also depicts highly resilient lands to the east and south of the Town Forest, as well as throughout most of northeastern Sharon and elsewhere. Based on The Nature Conservancy's evaluation, these regions of Sharon contain the town's most significant lands if prioritizing landscape-scale biodiversity. All of Sharon's wildlife habitats and natural communities face pressure from climate change, invasive plants, and forest pests, yet Sharon Town Forest's resiliency and connectivity make the property more adaptable than smaller, less diverse, and more isolated forests elsewhere in the region. Continued permanent conservation efforts of Sharon's climate-resilient lands would provide plants and wildlife with a viable long-term refuge and as they respond to transforming ecosystems and Earth's changing climate.

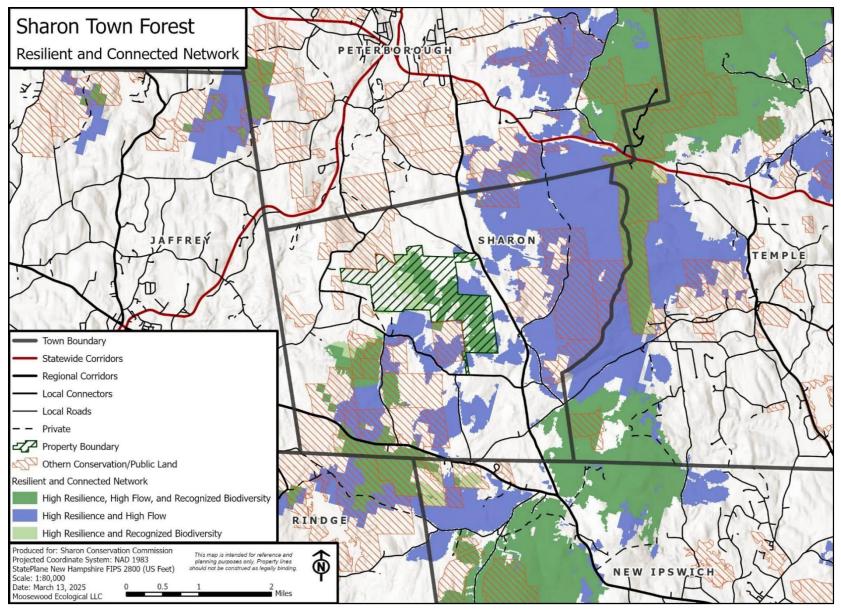



Figure 16. The Nature Conservancy's national model of climate-resilient and connected lands within the greater Sharon area.

## WILDLIFE HABITAT AND FOREST STEWARDSHIP

Stewardship is an ethic that embodies the careful and responsible management and supervision of Sharon Town Forest, whereby safeguarding its natural resources. The following recommendations are based on this ethic and guided by the nine stewardship strategies outlined below.

- Maintenance of soil productivity;
- Protection of water quality, wetlands and riparian areas;
- Maintenance or enhancement of wildlife habitat;
- Maintenance or enhancement of the overall quality of the forest;
- Diversification of age classes to promote a healthy balance of early, mid, and late successional forest stands to support overall biodiversity;
- Protection of unique or fragile natural areas;
- Protection of unique historic or cultural features;
- Conservation of native plant and animal species, and natural communities; and
- Incorporation of the effects of climate change to promote ecological resilience for long-term health.

#### **RECOMMENDATIONS AND STRATEGIES**

We recommend the following short and long-term strategies to achieve wildlife habitat and forest stewardship based on site-specific, data-driven information acquired during the Sharon Town Forest ecological inventory. These strategies were based on the stewardship of species of conservation concern, current forest conditions, past land use, and protection of ecologically significant areas while maintaining and enhancing overall biodiversity on Sharon Town Forest. Also addressed is the protection of soils and productivity, as well as the protection of historical and cultural features and basic trail recommendations.

## Maintain, Enhance, and Protect Native Biodiversity, Habitats, and Species of Concern

The following strategies are long-term solutions to maintain, enhance, and protect native biodiversity, habitats, and species of concern. These were based on our current understanding of Sharon Town Forest. These general strategies should be considered

- Maintain a diversity of forest age classes, densities, and structures that promote various stages of forest stand development. This will create a variety of habitats to promote biodiversity and forest health through:
  - Creation of an overall uneven-aged forest throughout the property through timber harvesting that results in 3 age classes, including *early*, *mid*, *and late-successional/old growth forests*
  - Enhancement of wildlife habitats for species of conservation concern that are known to use the property
  - o Improvement of genetic stand quality and regeneration for a more resilient forest
  - o Improvement of understory forest habitat, providing cover and browse for many species of wildlife.

- We recommend implementing the use of forestry techniques found in Silviculture with Birds in Mind (Hagenbuch et al 2011) developed by Vermont Audubon and the State of Vermont. This can help to achieve uneven-aged forest habitats. This guide focuses on wildlife habitat and forest stewardship that uses silvicultural methods to enhance habitats for a representative group of birds of conservation concern, many of which use the property during the breeding and migratory seasons. This provides a good example of how silviculture can produce positive outcomes for land stewardship.
- Improve understory forest habitat, cover, and browse. The use of silvicultural techniques can help achieve this objective. The use of single-tree and small group selections during timber harvests can mimic natural disturbances. These are important elements to diversify the wildlife habitats and to enhance populations of species of conservation concern.
- Encourage land stewardship activities that favor known and potential species of conservation concern.
- Limit timber harvests to mid-August to March when possible. This will help to limit incidental impacts to wildlife particularly during the breeding season for vernal pool amphibians and birds.
- Develop and maintain snag and cavity trees, which provide critical nesting and denning sites for many wildlife. The following size classes provides guidance.
  - o 12-15 inches: softwoods = 5 trees/acre and hardwoods = 4 trees/acre
  - >15 inches: softwoods = 3 trees/acre and hardwoods = 1 tree/acre
- Minimize or eliminate the need for stream crossings during silvicultural activities.
- Minimize construction of new roads and landings where possible. Keep sensitive habitats (such as vernal pools, seeps, wetlands) free of skidder roads and other mechanized operations, including new landings
- During logging operations, allow dead standing and downed woody debris to decompose naturally, leaving these materials to the extent possible to contribute to natural processes and allowing woody material to support small wildlife such as mice, salamanders, frogs, snakes, and insects.
- See strategies outlined below for Invasive Plants Management and Monitoring.
- See strategies outlined below for Protect Water Quality, Ecologically Significant Areas, and Unique Natural Areas.

#### Protect Water Quality, Ecologically Significant Areas, and Unique Natural Areas

The following strategies provide suggested measures for the long-term protection of water quality, ecologically significant areas, and unique natural areas. These include designating an ecological reserve, as well as establishing naturally vegetated buffers around wetlands, streams, and vernal pools.

• For water quality protection meet or exceed Best Management Practices (BMPs) for Forestry: Protecting New Hampshire's Water Quality (Moesswilde 2005) and Good Forestry in the Granit State: Recommended Voluntary Forest Management Practices for New Hampshire (Bennett 2010; a revised draft is planned to be completed later in 2025). These guidelines should be used during any forestry project.

- Maintain naturally vegetated buffers around permanent streams and wetlands using a
  tiered forested buffer. The proposed buffer system would include 3 distinct management
  zones within 500 feet of Meadow Brook and associated wetlands. The following provides
  one scenario to achieve resource protection while affording opportunities for forest
  management (Table 6). Exceptions may include the necessity for ecological restoration
  based on site-specific conditions and the risk to the ecosystem.
  - Maintain, at a minimum, 100-foot forested riparian buffers around wetlands and on either side of Meadow Brook as a no-cut zone where no equipment is allowed. Seventy-five percent of the forest canopy should be maintained within the next 200-foot zone and fifty percent of the forest canopy should be maintained within the next 200-foot zone.
  - The forested riparian buffer edge shall be measured from the stream edge of the normal high-water mark of the stream. In cases where wetlands surround the stream edge, the forested riparian buffer edge shall be measured from the boundary of the upland edge of the wetland area.
- Maintain naturally vegetated buffers around intermittent streams using a tiered forested buffer. The proposed buffer system would include 2 distinct management zones within 50 feet of the streams. The following provides one scenario to achieve resource protection while affording opportunities for forest management (Table 6). Exceptions may include the necessity for ecological restoration based on site-specific conditions and the threat to the ecosystem.
  - Maintain, at a minimum, 50-foot forested riparian buffers around all intermittent streams whereas a 25-foot no-cut zone is established where no timber extraction is allowed next to the intermittent stream and single tree harvesting can occur with the next 25-foot riparian buffer whereas 50% canopy cover should be maintained within the entire 50-foot forested riparian buffer.
  - O Streams crossing should be avoided or minimized when possible.
- Maintain naturally vegetated buffers around vernal pools using a tiered forested buffer. The proposed buffer system would include 4 distinct management zones within 400 feet of vernal pools. The following provides one scenario to achieve resource protection while affording opportunities for forest management (Table 6). Exceptions may include the necessity for ecological restoration based on site-specific conditions and the threat to the ecosystem.
  - Maintain habitat integrity of vernal pools by retaining a mostly closed forested canopy while minimizing forest floor disturbance in the upland terrestrial life zone around vernal pools for at least 200 feet. If harvesting timber adjacent to vernal pools adhere to the following guidelines. These buffers were based on the recommendations provided by Calhoun and deMaynadier (2004), a cooperative publication of the University of Maine, Maine Audubon, Maine Department of Inland Fisheries and Wildlife, Maine Department of Conservation, and the Wildlife Conservation Society.
    - Establish a no-cut zone to retain 100% canopy cover within 50 feet from the edge of the pool

- Retain at least 75% canopy cover 50-100 feet from the edge of the pool
- Retain at least 50% canopy cover 100-200 feet from the edge of the pool
- Whenever possible increase buffer zones to maximize the benefit of wildlife and vernal pool habitat protection
- Within 200-400 feet of vernal pools avoid forest openings greater than 1 acre.
- o No log landings or road construction shall be created within the above buffers.

Table 6. Forest management zones and associated forest buffer distances by aquatic feature type based on the scenarios described above.

|                           | Wetlands and | Intermittent | Vernal       |
|---------------------------|--------------|--------------|--------------|
| Zone                      | Meadow Brook | Streams      | Pools        |
| No-cut Ecological Reserve | 0-100 feet   | 0-25 feet    | 0-50 feet    |
| Retain >75% canopy cover  | 100-300 feet |              | 50-100 feet  |
| Retain >50% canopy cover  | 300-500 feet | 25-50 feet   | 100-200 feet |
| Avoid forest openings >1  |              |              | 200-400 feet |
| acre                      |              |              | 200 400 ICCt |

- Exceptions to timber harvesting in the above buffer zones may include those operations
  associated with ecological restoration. Consult with a qualified wildlife biologist or
  ecologist and forester prior to conducting ecological restoration within buffer zones. Trail
  maintenance may be conducted within these buffers so as not to impact water quality and
  aquatic habitat.
- When conducting a timber harvesting operation, a qualified wildlife biologist or ecologist should assist in identifying site-specific ecologically significant areas (i.e., vernal pools) and mark appropriate buffers based on the recommendations outlined above. This will provide accountability and assurance that ecologically significant areas will not be negatively impacted.

#### **Designate Ecological Reserves and Special Management Zones**

- Special Management Zones and Ecological Reserves are designated to help protect Sharon Town Forest's most significant natural resources over time within the larger working forest (Figure 17). This management strategy would greatly enhance forest habitat, ecological resiliency, and maintenance of overall biodiversity at Sharon Town Forest. Land stewardship and management of this type has been implemented on private, municipal, state, and federal lands. The State of New Hampshire has adopted this strategy on public lands, including Pisgah State Park. Refer to Table 6 and Figure 17 for guidance.
- Ecological Reserves have been designated to protect streams including Meadow Brook, wetlands, and vernal pools, as well as the species that depend upon these significant habitats (Figure 17). The designation of the western Ecological Reserve is based on the aggregation of productive vernal pools in close proximity to one another, affording an opportunity to provide a contiguous unmanaged forest protecting these vital resources.

The intent of all Ecological Reserves is to allow for natural processes to occur in the absence of forest management, ensuring long-term protection of these sensitive habitats and their biodiversity while supporting the development of late successional/old-growth forest characteristics. These characteristics are typically overlooked as important land management opportunities, and they represent only a small portion of our forested lands. Old forests provide important wildlife habitat and support dynamic plant communities while storing and sequestering carbon in the forest as well as the underlying soil. Exceptions for forest management within Ecological Reserves may include maintenance of existing trails and ecological restoration, such as management of invasive species as deemed appropriate.

• Special Management Zones are designated to provide additional protections associated with Ecological Reserves while providing opportunities for forest management. Management operations within Special Management Zones should be driven by a tiered forested buffer system of limited forest management activities (i.e., placement of logging roads and landings, timber extraction, equipment use, ecological restoration, trail maintenance, etc.). These zones are described in Table 6, including the two strategies listed above: "Protect Water Quality, Ecologically Significant Areas, and Unique Natural Areas" and "Maintain, Enhance, and Protect Biodiversity, Habitats, and Species of Concern."

## **Invasive Plants Management and Monitoring**

- Develop an Invasive Species Management and Monitoring Program. The main priority should focus on restoration of Meadow Brook and its associated wetlands. This area is rapidly in need of restoration and will continue to provide a major seed source to the detriment of this ecologically significant area. Other priorities include areas associated with the recent logging event from 2012 and the associated log landing off McCoy Road, as well as along trails within and roadways adjacent to Sharon Town Forest. This would be a great way for the community to become involved with active stewardship at Sharon Town Forest.
- An integrative invasive plant management plan could be developed to identify the
  appropriate types of techniques needed at various locations. Removal and proper disposal
  of invasive plants should be in accordance with New Hampshire laws governing invasive
  species.
- Prior to future logging operations, areas should be assessed for the presence of invasive plants, and follow up monitoring and management, as needed, should be conducted to ensure native plant and forest regeneration occurs for the future ecological health of Sharon Town Forest and economic benefit for Sharon's residents.

## **Protect Soils and Maintenance of Soil Productivity**

As the Town continues to use silviculture for wildlife habitat and forest stewardship it should incorporate measures that seek to protect fragile soils and maintenance of soil

productivity. Many of the following guidelines were developed by the US Department of Agriculture Natural Resources Conservation Services (NRCS). These guidelines should be used in areas of active timber harvesting, and they should be revised as new data and technology have been gathered to enhance the protection of soils and productivity.

- Limit the area of compacted soils
  - Operate equipment on established and newly designed roads and trails and minimize travel into the general forest area
  - Operate equipment on woody debris in areas of sensitive or wet soils where subsurface hydrologic conditions exist
  - o Sequence forest management activities to limit the number of equipment passes
  - Use smaller or lighter equipment, track equipment, low PSI tires, and lighter loads when feasible
  - Restore heavily compacted areas to the extent possible
- Limit impacts of roads and landings
  - o Follow natural contours when designing and conducting timber sales, and avoid disturbing natural drainage channels whereby minimizing stream crossings
  - o Establish cover on roads and landings that are not in use
  - Limit soil disturbance and control erosion
  - o Protect roads through the use of water bars/rolling dips
  - o Retain downed tops and other unharvested materials to the extent possible for ground cover, nutrient cycling, organic matter retention, and wildlife habitat
- Maintain favorable conditions for forest growth
  - Control the amount of road use, and off-road travel, to prevent erosion, compaction, and disturbance of the soil surface
  - Establish cover on disturbed areas
- Retain and enhance carbon storage to support soil ecological functions
  - Maintain forest stocking for proper canopy cover
  - Maintain and add, as needed, woody material to the soil by girdling or cutting non-merchantable trees or trees of undesired species. This effort will also provide wildlife trees (or snags)
  - Use extended rotations to keep carbon on site for a longer period
  - Retain fallen trees, branches, snags, downed tops, and other unharvested materials for ground cover, nutrient cycling, and organic matter retention, to the extent possible and practical based on prescribed silvicultural techniques. Leaving these materials will contribute to natural processes to promote healthy forests and allows woody material to support small wildlife such as mice, salamanders, frogs, snakes, and insects.
- Implement forest stand improvement activities in ways that avoid or minimize soil erosion, compaction, rutting, and damage to remaining vegetation, and that maintain hydrologic conditions

• Protect site resources by selecting the method, felling direction, and timing of tree felling and heavy equipment operation. Protect soil and site resources during use of trails and landings, and limit property access with iron gates or other options, where applicable.

#### **Hiking Trail System**

- Development of new trails beyond rerouting existing trails as needed is discouraged at this time.
- If there becomes the need to reroute existing trails, refer to Figure 18 below and the corresponding document. This map is based on Planning Trails for People and Wildlife developed by NH Fish and Game (Stevens and Oehler, 2019). This document and mapping analysis was designed to help make better inform planning decisions around trail development to reduce negative impacts on sensitive habitats and biodiversity.
- Continue the policy to restrict motorized vehicles from using the property to prevent wildlife mortality and other negative impacts to habitats, natural communities, and forest regeneration, as well as to reduce the spread of invasive species.
- When necessary, use simple elevated foot bridges in wet areas to reduce damage to soils and vegetation along the trail and to discourage off-trail traveling. Often times, hikers may seek drier grounds in different seasons to avoid wet areas, creating an unintentional bypass. If rerouting a trail seems more feasible that a simple foot bridge refer to Figure 18 and Planning Trails for People and Wildlife developed by NH Fish and Game (Stevens and Oehler, 2019).

#### **Protect Unique Historical and Cultural Features**

Identify and protect unique historical and cultural features in areas of active timber harvesting and trail maintenance. There are a few knofor guidancewn cellar holes and numerous miles of stone walls present at Sharon Town Forest, providing a legacy to past human land use once European colonists began to establish homesteads. There may be other historical and cultural features present, as well as aspects that predate the arrival of Europeans. These features should be given special recognition and considered during land management activities.

#### **Conserve Scenic Quality from Roads and Trails**

Maintain at least a 50-foot naturally vegetated forested buffer along roads, trails, and scenic vistas. Exceptions for trails include areas identified for patch cuts and wildlife openings that enhance wildlife habitat. These areas of habitat management located adjacent to trails offer a wonderful opportunity for education for how silviculture can promote habitat and forest stewardship. It also affords a chance for trail users to experience different habitats and potentially observe wildlife not found in mature forests.

#### **Identify and Mark Boundaries**

Property boundaries should be clearly marked. This can be achieved with blazing and painting or placing placards on live trees. The current estimated length of the boundary is 8.8 miles. This would translate into roughly 155 placards spaced every 100 yards, and it is recommended to use aluminum roofing nails that extend sufficiently from the trunk so that the

tree is allowed to grow without engulfing the nails. The condition of the boundary markers should be assessed every 3-5 years. This will help to clearly identify the bounds of the Sharon Town Forest for adjacent landowners and to inform land stewardship activities on the property such as habitat and trails management.

## **Establish an Ecological Monitoring Program**

A great way to get the public involved with stewardship and monitoring at Sharon Town Forest is to establish an Ecological Monitoring Program. This would provide community outreach and education while collecting long-term data to assess the effectiveness of land stewardship management. Below are some of the examples that can be incorporated into such a program.

- Vernal pool investigations
  - o Inventory potential vernal pools identified on the wildlife habitats map to better understand wildlife use, particularly amphibians and reptiles.
  - Monitor vernal pools to account for seasonal and yearly variations to help inform future land stewardship activities.
  - Document vernal pools using *Identification and Documentation of Vernal Pools in New Hampshire* by Tappan and Marchand (rev. 2013).
- Bird species of greatest conservation need
  - O Develop a monitoring program to better understand the distribution and relative abundance of birds over time, particularly where timber has been harvested, to determine if these actions are achieving goals for target species. These data are vital for developing adaptive land stewardship planning into the future.
- Monitor additional species of conservation concern that are currently documented as well as those observed in the future.

## **Explore a Carbon Credit Program**

The Sharon Conservation Commission expressed interest in learning more about carbon programs for Sharon Town Forest. There are many certified carbon credit programs that the Town can explore online. Moosewood Ecological does not recommend a specific program. However, a current client is working with The Climate Trust based in Portland, Oregon.

Moosewood Ecological conducted a simple forest carbon credit analysis for Sharon Town Forest using The Nature Conservancy's Resilient Lands Mapping Tool to provide some insights into the estimates for 2020 and 2070 (Appendix F). These are based on current and future expected conditions. Importantly, the year 2020 is the "current" state of the forest, where disturbances such as timber harvests up to 2020 have been accounted for. Years 2050 and 2070 are projected carbon stocks in a 'grow-only' scenario where no disturbance nor changes in climate are considered. The grow-only scenario is an upper bound of possible carbon sequestration if no disturbance was to occur.

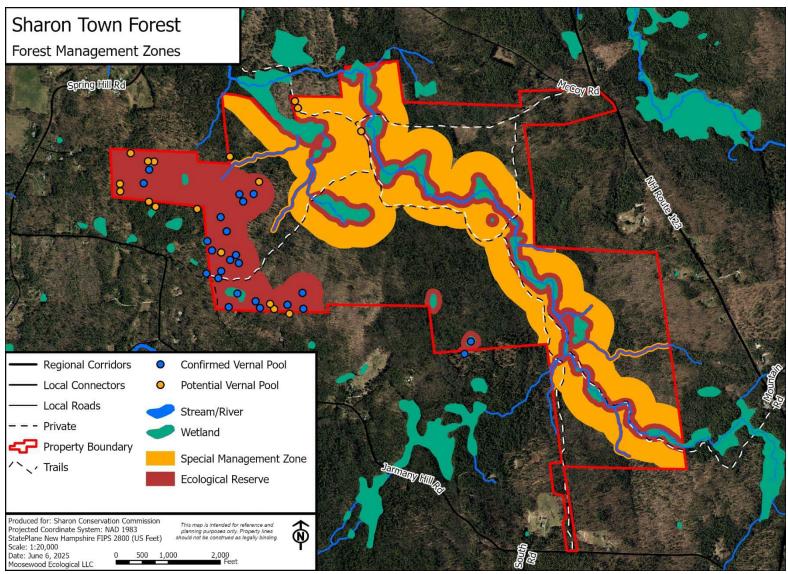



Figure 17. Special Management Zones and Ecological Reserves at Sharon Town Forest.

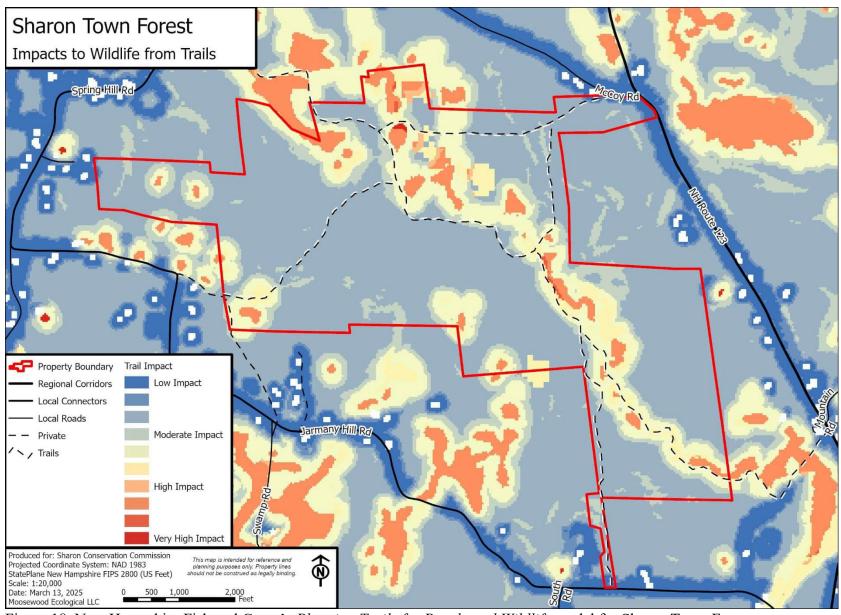



Figure 18. New Hampshire Fish and Game's Planning Trails for People and Wildlife model for Sharon Town Forest.

## **ECOLOGICAL INVENTORY CONCLUSIONS**

Based the findings from this broad-spectrum ecological inventory, Sharon Town Forest contains numerous significant ecological resources of high conservation value. Our field observations largely validated many of the findings from the natural resources inventory developed by Van de Poll (1996), and we confirmed 31 species of conservation concern actively using the property for one or more parts of their life cycles. Sharon Town Forest's diverse assemblage of landforms, soils, hydrologic conditions, and natural communities suggest that additional species of conservation concern likely also depend on the property for food, shelter, water, and space – the four criteria for functional wildlife habitat.

Sharon Town Forest also hosts a high density of vernal pools, which support excellent-quality breeding sites for amphibians and invertebrates dependent on these small, ephemeral waterbodies. At the regional and national scales, Sharon Town Forest and the surrounding area has repeatedly been identified as a conservation priority by multiple studies and conservation planning efforts. The site's rich biodiversity, high degree of climate-resiliency, and strong habitat connectivity provide invaluable benefits to local flora and fauna, but also benefit Sharon's residents through such ecosystem services as air purification, carbon sequestration, groundwater filtration, floodwater retention, flower pollination, nature-based recreation, and aesthetic value. Many opportunities for future inventory and research exist, and such endeavors could further contribute to ecologically-informed, climate-smart stewardship of Sharon Town Forest for generations to come.

## LITERATURE CITED AND ADDITIONAL RESOURCES

- Calhoun, A. J. K., and P. deMaynadier. 2004. Forestry Habitat Management Guidelines for Vernal Pool Wildlife. MC Technical Paper No. 6, Metropolitan Conservation Alliance, Wildlife Conservation Society, Bronx, NY.
- Cameron, S.A., Lozier, J.D., Strange, J.P, Koch, J.B., Cordes, N., Solter, L.F. and Griswold, T.L. 2011a. Patterns of widespread decline in North American bumble bees. *Proceedings of the National Academy of Science (USA)* 108(2): 662-667.
- Cameron, S., Jepsen, S., Spevak, E., Strange, J., Vaughan, M., Engler, J. and Byers O. (eds.). 2011b. North American Bumble Bee Species Conservation Planning Workshop Final Report. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MN.
- Corwin, S. and A. Fields. 2007. Robert P. Bass Memorial Forest Management Plan. Calhoun and Corwin Forestry, Peterborough, NH.
- Corwin, S. 2023. Assessment of the Sharon Town Forest: Hemlock Looper Damage. Calhoun and Corwin Forestry, Peterborough, NH.
- DeGraaf, R. M., and D. D. Rudis. 1986. New England Wildlife: Habitat, Natural History, and Distribution. General Technical Report NE-108. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experimental Station, Broomall, PA.
- Dettmers, R. 2006. A Blueprint for the Design and Delivery of Bird Conservation in the Atlantic Northern Forest (BCR 14). U.S. Fish and Wildlife Service. Washington, D.C.
- Goldthwait, J.W., L. Goldthwait, R.P. Goldthwait. 1951. The Geology of New Hampshire: Part I Surficial Geology. New Hampshire State Planning and Development Commission, Concord, NH.
- Hildreth, C.T. 1991. Surficial Geologic Map of the Peterborough South Quadrangle, Hillsborough and Cheshire Counties, New Hampshire. New Hampshire Department of Environmental Services.
- Hunt, P. D. 2012. The New Hampshire Dragonfly Survey: A Final Report. Report to the NH Fish and Game Department. Audubon Society of NH, Concord, NH.
- Hunt, P. D. 2020. The State of New Hampshire's Birds A Conservation Guide. New Hampshire Audubon, Concord, NH.
- Lyons, J.B., W.A. Bothner, R.H. Moench, and J.B. Thompson Jr. 1997. Bedrock Geologic Map of New Hampshire: U.S. Geologic Survey [State Geologic Map], scale 1:250,000.
- Maine Forest Service. 2023. Hemlock Looper (*Lambdina fiscellaria*). Accessed online on 13 December 2023 from https://www.maine.gov/dacf/mfs/forest\_health/insects/hemlock\_looper.htm

- McCloskey, S. P. J. M. 2007. Western Hemlock Looper: A Biological Agent of Disturbance in Coastal Forests of British Colombia. Doctoral dissertation, University of British Colombia.
- Mitchell, J. C., A. R. Breisch, and K. A. Buhlmann. 2006. Habitat Management Guidelines for Amphibians and reptiles of the Northeastern United States. Partners in Amphibian and Reptile Conservation, Technical Publication HMG-3, Montgomery, AL.
- New Hampshire Fish and Game Department (NHFG). 2015. New Hampshire State Wildlife Action Plan. Concord, NH.
- New Hampshire Natural Heritage Bureau (NHNHB). 2020. New Hampshire Official Rare Plants List. Concord, NH.
- North American Bird Conservation Initiative (NABCI). 2022. The State of the Birds, United States of America, 2022. StateoftheBirds.org
- Rosenberg, K. V., J. A. Kennedy, R. Dettmers, R. P. Ford, D. Reynolds, J.D. Alexander, C. J. Beardmore, P. J. Blancher, R. E. Bogart, G. S. Butcher, A. F. Camfield, A. Couturier, D. W. Demarest, W. E. Easton, J.J. Giocomo, R.H. Keller, A. E. Mini, A. O. Panjabi, D. N. Pashley, T. D. Rich, J. M. Ruth, H. Stabins, J. Stanton, and T. Will. 2016. Partners in Flight Landbird Conservation Plan: 2016 Revision for Canada and Continental United States. Partners in Flight Science Committee.
- Sperduto, D. D. 2011. Natural Community Systems of New Hampshire. New Hampshire Natural Heritage Bureau, Concord, NH.
- Sperduto, D. D., and W. F. Nichols. 2011. Natural Communities of New Hampshire. New Hampshire Natural Heritage Bureau, Concord, NH. Pub. UNH Cooperative Extension, Durham, NH.
- Stevens, R., & Oehler, J. 2019. A Guide to Planning Trails that allow People to Enjoy Nature and Wildlife to Thrive. https://www.wildlife.nh.gov/sites/g/files/ehbemt746/files/inline-documents/sonh/trails-for-people-wildlife.pdf
- University of Maine Cooperative Extension. 2023. Hemlock Looper. Accessed online on 11 December 2023 from https://extension.umaine.edu/home-and-garden-ipm/fact-sheets/common-name-listing/hemlock-looper/
- Van de Poll, R. 1996. Natural Resources Inventory of the Sharon Town Forest.

## **APPENDIX A: BIRDS OF SHARON TOWN FOREST**

Key to conservation status identifiers:

- 1 Bird Conservation Region 14 assessment (Dettmers, 2006)
- 2 Partners in Flight assessment (Rosenberg et al., 2016)
- 3 North American Bird Conservation Initiative assessment (NABCI, 2022)
- 4 New Hampshire State Wildlife Action Plan (NHFG, 2015)
- 5 New Hampshire Audubon assessment (Hunt, 2020)

| Common Name                  | Scientific Name        | <b>Conservation Status</b> | NH Population<br>Trend | Season Present at Sharon<br>Town Forest |
|------------------------------|------------------------|----------------------------|------------------------|-----------------------------------------|
| Acadian Flycatcher           | Empidonax virescens    |                            | Accidental/Vagrant     | Spring Migration                        |
| Alder Flycatcher             | Empidonax alnorum      |                            | Strongly increasing    | Spring, Summer, Fall                    |
| American Crow                | Corvus brachyrhynchos  |                            | Increasing             | Year-round                              |
| American Goldfinch           | Spinus tristis         |                            | Stable                 | Year-round                              |
| American Goshawk             | Astur atricapillus     | 1, 4, 5                    | Unknown                | Year-round                              |
| American Robin               | Turdus migratorius     |                            | Stable                 | Year-round                              |
| Barn Swallow                 | Hirundo rustica        | 1                          | Strongly decreasing    | Spring, Summer, Fall                    |
| Barred Owl                   | Strix varia            |                            | Increasing             | Year-round                              |
| Black-and-white Warbler      | Mniotilta varia        |                            | Strongly decreasing    | Spring, Summer. Fall                    |
| Blackburnian Warbler         | Setophaga fusca        | 1                          | Stable                 | Spring, Summer, Fall                    |
| Black-capped Chickadee       | Poecile atricapillus   |                            | Increasing             | Year-round                              |
| Black-throated Blue Warbler  | Setophaga caerulescens | 1                          | Increasing             | Spring, Summer, Fall                    |
| Black-throated Green Warbler | Setophaga virens       | 1                          | Increasing             | Spring, Summer, Fall                    |
| Blue Jay                     | Cyanocitta cristata    |                            | Decreasing             | Year-round                              |
| Blue-headed Vireo            | Vireo solitarius       |                            | Increasing             | Spring, Summer, Fall                    |
| Broad-winged Hawk            | Buteo platypterus      |                            | Increasing             | Spring, Summer, Fall                    |
| Brown Creeper                | Certhia americana      | 1                          | Increasing             | Year-round                              |
| Canada Goose                 | Branta canadensis      |                            | Strongly increasing    | Spring/Fall Migration                   |
| Canada Warbler               | Cardellina canadensis  | 1, 2, 3, 4, 5              | Strongly decreasing    | Spring, Summer, Fall                    |
| Cedar Waxwing                | Bombycilla cedrorum    |                            | Stable                 | Spring, Summer, Fall                    |
| Chestnut-sided Warbler       | Setophaga pensylvanica | 1                          | Strongly decreasing    | Spring, Summer, Fall                    |
| Chimney Swift                | Chaetura pelagica      | 1, 2, 3, 4, 5              | Strongly decreasing    | Spring, Summer, Fall                    |

| Common Name              | Scientific Name         | <b>Conservation Status</b> | NH Population<br>Trend | Season Present at Sharon<br>Town Forest |
|--------------------------|-------------------------|----------------------------|------------------------|-----------------------------------------|
| Chipping Sparrow         | Spizella passerina      |                            | Increasing             | Spring, Summer, Fall                    |
| Common Grackle           | Quiscalus quiscula      | 2                          | Strongly decreasing    | Spring, Summer, Fall                    |
| Common Raven             | Corvus corax            |                            | Increasing             | Year-round                              |
| Common Yellowthroat      | Geothlypis trichas      |                            | Stable                 | Spring, Summer, Fall                    |
| Dark-eyed Junco          | Junco hyemalis          |                            | Strongly decreasing    | Fall, Winter, Spring                    |
| Downy Woodpecker         | Dryobates pubescens     |                            | Strongly increasing    | Year-round                              |
| Eastern Phoebe           | Sayornis phoebe         |                            | Stable                 | Spring, Summer, Fall                    |
| Eastern Towhee           | Pipilo erythrophthalmus | 4, 5                       | Strongly decreasing    | Spring, Summer, Fall                    |
| Eastern Wood-Pewee       | Contopus virens         | 1                          | Decreasing             | Spring, Summer, Fall                    |
| Golden-crowned Kinglet   | Regulus satrapa         |                            | Increasing             | Year-round                              |
| Gray Catbird             | Dumetella carolinensis  |                            | Stable                 | Spring, Summer, Fall                    |
| Great Blue Heron         | Ardea herodias          |                            | Increasing             | Spring, Summer, Fall                    |
| Great Crested Flycatcher | Myiarchus crinitus      |                            | Stable                 | Spring, Summer, Fall                    |
| Hairy Woodpecker         | Dryobates villosus      |                            | Increasing             | Year-round                              |
| Hermit Thrush            | Catharus guttatus       |                            | Stable                 | Spring, Summer, Fall                    |
| Mallard                  | Anas platyrhynchos      |                            | Increasing             | Spring, Summer, Fall                    |
| Mourning Dove            | Zenaida macroura        |                            | Increasing             | Year-round                              |
| Nashville Warbler        | Leiothlypis ruficapilla |                            | Strongly decreasing    | Spring, Summer, Fall                    |
| Northern Flicker         | Colaptes auratus        | 1                          | Decreasing             | Spring, Summer, Fall                    |
| Northern House Wren      | Troglodytes aedon       |                            | Decreasing             | Spring, Summer, Fall                    |
| Northern Waterthrush     | Parkesia noveboracensis |                            | Strongly decreasing    | Spring, Summer, Fall                    |
| Ovenbird                 | Seiurus aurocapilla     | 1                          | Stable                 | Spring, Summer, Fall                    |
| Pileated Woodpecker      | Dryocopus pileatus      |                            | Strongly increasing    | Year-round                              |
| Pine Siskin              | Spinus pinus            |                            | Unknown                | Year-round                              |
| Pine Warbler             | Setophaga pinus         |                            | Strongly increasing    | Spring, Summer, Fall                    |
| Prairie Warbler          | Setophaga discolor      | 2, 3, 4, 5                 | Increasing             | Spring, Summer, Fall                    |
| Purple Finch             | Haemorhous purpureus    | 1, 4, 5                    | Strongly decreasing    | Year-round                              |
| Red Crossbill            | Loxia curvirostra       |                            | Unknown                | Year-round                              |
|                          |                         |                            |                        |                                         |

| Common Name               | Scientific Name         | <b>Conservation Status</b> | NH Population<br>Trend | Season Present at Sharon<br>Town Forest |
|---------------------------|-------------------------|----------------------------|------------------------|-----------------------------------------|
| Red-bellied Woodpecker    | Melanerpes carolinus    |                            | Strongly increasing    | Year-round                              |
| Red-breasted Nuthatch     | Sitta canadensis        |                            | Increasing             | Year-round                              |
| Red-eyed Vireo            | Vireo olivaceus         |                            | Increasing             | Spring, Summer, Fall                    |
| Red-shouldered Hawk       | Buteo lineatus          |                            | Increasing             | Spring, Summer, Fall                    |
| Red-tailed Hawk           | Buteo jamaicensis       |                            | Increasing             | Year-round                              |
| Red-winged Blackbird      | Agelaius phoeniceus     |                            | Decreasing             | Spring, Summer, Fall                    |
| Rose-breasted Grosbeak    | Pheucticus ludovicianus | 1                          | Strongly decreasing    | Spring, Summer, Fall                    |
| Ruby-crowned Kinglet      | Corthylio calendula     |                            | Decreasing             | Spring/Fall Migration                   |
| Ruby-throated Hummingbird | Archilochus colubris    |                            | Increasing             | Spring, Summer, Fall                    |
| Ruffed Grouse             | Bonasa umbellus         | 1, 4, 5                    | Decreasing             | Year-round                              |
| Scarlet Tanager           | Piranga olivacea        | 4, 5                       | Strongly decreasing    | Spring, Summer, Fall                    |
| Song Sparrow              | Melospiza melodia       |                            | Decreasing             | Spring, Summer, Fall                    |
| Spotted Sandpiper         | Actitis macularius      |                            | Decreasing             | Spring/Fall Migration                   |
| Swamp Sparrow             | Melospiza georgiana     |                            | Stable                 | Spring, Summer, Fall                    |
| Tree Swallow              | Tachycineta bicolor     |                            | Decreasing             | Spring, Summer, Fall                    |
| Tufted Titmouse           | Baeolophus bicolor      |                            | Strongly increasing    | Year-round                              |
| Veery                     | Catharus fuscescens     | 1, 4, 5                    | Decreasing             | Spring, Summer, Fall                    |
| White-breasted Nuthatch   | Sitta carolinensis      |                            | Strongly increasing    | Year-round                              |
| White-throated Sparrow    | Zonotrichia albicollis  |                            | Strongly decreasing    | Year-round                              |
| Wild Turkey               | Meleagris gallopavo     |                            | Strongly increasing    | Year-round                              |
| Winter Wren               | Troglodytes hiemalis    |                            | Unknown                | Spring, Summer, Fall                    |
| Wood Duck                 | Aix sponsa              | 1                          | Increasing             | Spring, Summer, Fall                    |
| Yellow-bellied Sapsucker  | Sphyrapicus varius      | 1                          | Increasing             | Spring, Summer, Fall                    |
| Yellow-billed Cuckoo      | Coccyzus americanus     | 2                          | Decreasing             | Spring, Summer, Fall                    |
| Yellow-rumped Warbler     | Setophaga coronata      |                            | Stable                 | Spring, Summer, Fall                    |

# **APPENDIX B: SHARON TOWN FOREST BIODIVERSITY**

A total of 771 wild species were documented at Sharon Town Forest over the course of this project.

| Common Name                     | Scientific Name        | <b>Taxonomic Class</b> | Taxonomic Order | <b>Taxonomic Family</b> |
|---------------------------------|------------------------|------------------------|-----------------|-------------------------|
| ARACHNIDS                       |                        |                        |                 | •                       |
| Six-spotted Orbweaver           | Araniella displicata   | Arachnida              | Araneae         | Araneidae               |
| Humpbacked Orbweaver            | Eustala anastera       | Arachnida              | Araneae         | Araneidae               |
| lined orbweaver                 | Mangora gibberosa      | Arachnida              | Araneae         | Araneidae               |
| Tuft-legged Orbweaver           | Mangora placida        | Arachnida              | Araneae         | Araneidae               |
| Arabesque Orbweaver             | Neoscona arabesca      | Arachnida              | Araneae         | Araneidae               |
|                                 | Emblyna spp.           | Arachnida              | Araneae         | Dictynidae              |
| Dark Fishing Spider             | Dolomedes tenebrosus   | Arachnida              | Araneae         | Dolomedidae             |
| Burrow-living Wolf Spiders      | Hogna spp.             | Arachnida              | Araneae         | Lycosidae               |
| Thin-legged Wolf Spiders        | Pardosa spp.           | Arachnida              | Araneae         | Lycosidae               |
| -                               | Philodromus spp.       | Arachnida              | Araneae         | Philodromidae           |
| American Nursery Web Spider     | Pisaurina mira         | Arachnida              | Araneae         | Pisauridae              |
| Bronze Jumping Spider           | Eris militaris         | Arachnida              | Araneae         | Salticidae              |
| Hoy's Jumping Spider            | Evarcha hoyi           | Arachnida              | Araneae         | Salticidae              |
| Brilliant Jumping Spider        | Phidippus clarus       | Arachnida              | Araneae         | Salticidae              |
| Grayish Jumping Spider          | Phidippus princeps     | Arachnida              | Araneae         | Salticidae              |
| Whitman's Jumping Spider        | Phidippus whitmani     | Arachnida              | Araneae         | Salticidae              |
| Elongate Stilt Spider           | Tetragnatha elongata   | Arachnida              | Araneae         | Tetragnathidae          |
| Versicolor Long-jawed Orbweaver | Tetragnatha versicolor | Arachnida              | Araneae         | Tetragnathidae          |
| Ground Crab Spiders             | Xysticus spp.          | Arachnida              | Araneae         | Thomisidae              |
|                                 | Misumenini (Tribe)     | Arachnida              | Araneae         | Thomisidae              |
| American Dog Tick               | Dermacentor variabilis | Arachnida              | Ixodida         | Ixodidae                |
| Eastern Black-legged Tick       | Ixodes scapularis      | Arachnida              | Ixodida         | Ixodidae                |
|                                 | Leiobunum spp.         | Arachnida              | Opiliones       | Sclerosomatidae         |
| beech erineum mite              | Acalitus ferrugineum   | Arachnida              | Sarcoptiformes  | Eriophyidae             |
|                                 | Acalitus longisetosus  | Arachnida              | Sarcoptiformes  | Eriophyidae             |
| Black Tupelo Gall Mite          | Aceria nyssae          | Arachnida              | Sarcoptiformes  | Eriophyidae             |
| -                               | Aculus minutissimus    | Arachnida              | Sarcoptiformes  | Eriophyidae             |
|                                 | Eriophyes betulae      | Arachnida              | Sarcoptiformes  | Eriophyidae             |
| Plum Finger Gall Mite           | Eriophyes emarginatae  | Arachnida              | Sarcoptiformes  | Eriophyidae             |
| Alder Leaf Gall Mite            | Eriophyes laevis       | Arachnida              | Sarcoptiformes  | Eriophyidae             |
|                                 |                        |                        |                 |                         |

| Common Name                         | Scientific Name          | Taxonomic Class | Taxonomic Order | <b>Taxonomic Family</b> |
|-------------------------------------|--------------------------|-----------------|-----------------|-------------------------|
| BRANCHIOPODS                        |                          |                 |                 |                         |
| Fairy shrimp                        | Eubranchipus spp.        | Branchiopoda    | Anostraca       | Chirocephalidae         |
| INSECTS (BEETLES)                   |                          |                 |                 |                         |
| Short-collared Soldier Beetle       | Podabrus brevicollis     | Insecta         | Coleoptera      | Cantharidae             |
|                                     | Rhagonycha spp.          | Insecta         | Coleoptera      | Cantharidae             |
|                                     | Bembidion spp.           | Insecta         | Coleoptera      | Carabidae               |
|                                     | Analeptura lineola       | Insecta         | Coleoptera      | Cerambycidae            |
|                                     | Etorofus subhamatus      | Insecta         | Coleoptera      | Cerambycidae            |
| Sugar Maple Borer                   | Glycobius speciosus      | Insecta         | Coleoptera      | Cerambycidae            |
|                                     | Judolia cordifera        | Insecta         | Coleoptera      | Cerambycidae            |
| White-spotted Sawyer                | Monochamus scutellatus   | Insecta         | Coleoptera      | Cerambycidae            |
| Strangalepta Flower Longhorn Beetle | Strangalepta abbreviata  | Insecta         | Coleoptera      | Cerambycidae            |
| Banded Longhorn Beetle              | Typocerus velutinus      | Insecta         | Coleoptera      | Cerambycidae            |
| Belly-banded Flea Beetle            | Capraita subvittata      | Insecta         | Coleoptera      | Chrysomelidae           |
|                                     | Chalepus walshii         | Insecta         | Coleoptera      | Chrysomelidae           |
| Maine Leaf Beetle                   | Chrysomela mainensis     | Insecta         | Coleoptera      | Chrysomelidae           |
| Tubercle-faced reed beetle          | Donacia tuberculifrons   | Insecta         | Coleoptera      | Chrysomelidae           |
|                                     | Microrhopala excavata    | Insecta         | Coleoptera      | Chrysomelidae           |
| Crowded Leaf Beetle                 | Ophraella conferta       | Insecta         | Coleoptera      | Chrysomelidae           |
| Metallic reed beetle                | Plateumaris metallica    | Insecta         | Coleoptera      | Chrysomelidae           |
| Red Aquatic Leaf Beetle             | Plateumaris rufa         | Insecta         | Coleoptera      | Chrysomelidae           |
| Shoemaker's reed beetle             | Plateumaris shoemakeri   | Insecta         | Coleoptera      | Chrysomelidae           |
|                                     | Tricholochmaea spp.      | Insecta         | Coleoptera      | Chrysomelidae           |
| Asian Lady Beetle                   | Harmonia axyridis        | Insecta         | Coleoptera      | Coccinellidae           |
| Sedge Billbug Weevil                | Sphenophorus costipennis | Insecta         | Coleoptera      | Curculionidae           |
| Red Click Beetle                    | Ampedus rubricus         | Insecta         | Coleoptera      | Elateridae              |
|                                     | Limonius spp.            | Insecta         | Coleoptera      | Elateridae              |
|                                     | Geotrupes spp.           | Insecta         | Coleoptera      | Geotrupidae             |
|                                     | Gyrininae (Subfamily)    | Insecta         | Coleoptera      | Gyrinidae               |
| Black Firefly                       | Lucidota atra            | Insecta         | Coleoptera      | Lampyridae              |
|                                     | Photinus spp.            | Insecta         | Coleoptera      | Lampyridae              |
|                                     | Photuris spp.            | Insecta         | Coleoptera      | Lampyridae              |
| Terminal Net-winged Beetle          | Caenia dimidiata         | Insecta         | Coleoptera      | Lycidae                 |
| Reticulated Net-winged Beetle       | Calopteron reticulatum   | Insecta         | Coleoptera      | Lycidae                 |
| _                                   | Plateros spp.            | Insecta         | Coleoptera      | Lycidae                 |
| Tumbling Ragdoll                    | Mordella marginata       | Insecta         | Coleoptera      | Mordellidae             |
| Oriental Beetle                     | Exomala orientalis       | Insecta         | Coleoptera      | Scarabaeidae            |

| Common Name                   | Scientific Name          | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|-------------------------------|--------------------------|-----------------|-----------------|------------------|
| Japanese Beetle               | Popillia japonica        | Insecta         | Coleoptera      | Scarabaeidae     |
| Marsh Beetles                 | Scirtidae (Family)       | Insecta         | Coleoptera      | Scirtidae        |
| False Flower Beetles          | Scraptiidae (Family)     | Insecta         | Coleoptera      | Scraptiidae      |
|                               | Philonthus spp.          | Insecta         | Coleoptera      | Staphylinidae    |
|                               | Sepedophilus spp.        | Insecta         | Coleoptera      | Staphylinidae    |
|                               | Capnochroa spp.          | Insecta         | Coleoptera      | Tenebrionidae    |
| Spurred Darkling Beetle       | Centronopus calcaratus   | Insecta         | Coleoptera      | Tenebrionidae    |
|                               | Isomira spp.             | Insecta         | Coleoptera      | Tenebrionidae    |
|                               |                          |                 |                 |                  |
| INSECTS (FLIES)               |                          |                 |                 |                  |
|                               | Agromyza idaeiana        | Insecta         | Diptera         | Agromyzidae      |
|                               | Agromyza vockerothi      | Insecta         | Diptera         | Agromyzidae      |
|                               | Calycomyza flavinotum    | Insecta         | Diptera         | Agromyzidae      |
|                               | Cerodontha spp.          | Insecta         | Diptera         | Agromyzidae      |
| Milkweed Leaf-miner Fly       | Liriomyza asclepiadis    | Insecta         | Diptera         | Agromyzidae      |
|                               | Liriomyza limopsis       | Insecta         | Diptera         | Agromyzidae      |
|                               | Liriomyza smilacinae     | Insecta         | Diptera         | Agromyzidae      |
| Jewelweed Leaf-miner Fly      | Phytoliriomyza melampyga | Insecta         | Diptera         | Agromyzidae      |
|                               | Phytomyza agromyzina     | Insecta         | Diptera         | Agromyzidae      |
|                               | Phytomyza aralivora      | Insecta         | Diptera         | Agromyzidae      |
|                               | Phytomyza plumiseta      | Insecta         | Diptera         | Agromyzidae      |
|                               | Phytomyza tarnwoodensis  | Insecta         | Diptera         | Agromyzidae      |
|                               | Chirosia filicis         | Insecta         | Diptera         | Anthomyiidae     |
| Eastern Yellow-backed Laphria | Laphria thoracica        | Insecta         | Diptera         | Asilidae         |
|                               | Laphria seicea (complex) | Insecta         | Diptera         | Asilidae         |
|                               | Laphria canis (complex). | Insecta         | Diptera         | Asilidae         |
| Black-thighed Bladetail       | Machimus notatus         | Insecta         | Diptera         | Asilidae         |
| Yellow-thighed Bentbristle    | Neoitamus flavofemoratus | Insecta         | Diptera         | Asilidae         |
|                               | Leptogastrini (Tribe)    | Insecta         | Diptera         | Asilidae         |
|                               | Villa spp.               | Insecta         | Diptera         | Bombyliidae      |
| Blow Flies                    | Calliphoridae (Family)   | Insecta         | Diptera         | Calliphoridae    |
| Ocellate Gall Midge           | Acericecis ocellaris     | Insecta         | Diptera         | Cecidomyiidae    |
| Euthamia leaf gall midge      | Asteromyia euthamiae     | Insecta         | Diptera         | Cecidomyiidae    |
|                               | Dasineura salicifoliae   | Insecta         | Diptera         | Cecidomyiidae    |
|                               | Macrodiplosis majalis    | Insecta         | Diptera         | Cecidomyiidae    |
|                               | Macrodiplosis niveipila  | Insecta         | Diptera         | Cecidomyiidae    |
| Rust-eating midges            | Mycodiplosis spp.        | Insecta         | Diptera         | Cecidomyiidae    |

| Common Name                     | Scientific Name           | Taxonomic Class | Taxonomic Order | <b>Taxonomic Family</b> |
|---------------------------------|---------------------------|-----------------|-----------------|-------------------------|
|                                 | Rhopalomyia hirtipes      | Insecta         | Diptera         | Cecidomyiidae           |
|                                 | Chlorops spp.             | Insecta         | Diptera         | Chloropidae             |
|                                 | Aedes spp.                | Insecta         | Diptera         | Culicidae               |
|                                 | Condylostylus patibulatus | Insecta         | Diptera         | Dolichopodidae          |
|                                 | Dolichopus spp.           | Insecta         | Diptera         | Dolichopodidae          |
|                                 | Tachytrechus spp.         | Insecta         | Diptera         | Dolichopodidae          |
|                                 | Elephantomyia westwoodi   | Insecta         | Diptera         | Limoniidae              |
|                                 | Molophilus spp.           | Insecta         | Diptera         | Limoniidae              |
|                                 | Eudasyphora cyanicolor    | Insecta         | Diptera         | Muscidae                |
| Cereal Fly                      | Geomyza tripunctata       | Insecta         | Diptera         | Opomyzidae              |
| Eastern Phantom Crane Fly       | Bittacomorpha clavipes    | Insecta         | Diptera         | Ptychopteridae          |
| Common Snipe Fly                | Rhagio mystaceus          | Insecta         | Diptera         | Rhagionidae             |
| Lesser Variegated Snipe Fly     | Rhagio punctipennis       | Insecta         | Diptera         | Rhagionidae             |
| Flesh Flies and Satellite Flies | Sarcophagidae (Family)    | Insecta         | Diptera         | Sarcophagidae           |
|                                 | Leptopa vittata           | Insecta         | Diptera         | Scathophagidae          |
| Golden Dung Fly                 | Scathophaga stercoraria   | Insecta         | Diptera         | Scathophagidae          |
|                                 | Phytosciara greylockensis | Insecta         | Diptera         | Sciaridae               |
|                                 | Tetanocera spp.           | Insecta         | Diptera         | Sciomyzidae             |
|                                 | Sepsis spp.               | Insecta         | Diptera         | Sepsidae                |
| Orange-tailed Wood Fly          | Blera analis              | Insecta         | Diptera         | Syrphidae               |
| Bog-dwelling Drone Fly          | Eristalis cryptarum       | Insecta         | Diptera         | Syrphidae               |
| Aphideaters                     | Eupeodes spp.             | Insecta         | Diptera         | Syrphidae               |
| Banded Thintail                 | Meliscaeva cinctella      | Insecta         | Diptera         | Syrphidae               |
| Sedgesitters                    | Platycheirus spp.         | Insecta         | Diptera         | Syrphidae               |
| Fourspot Sedgesitter            | Pyrophaena rosarum        | Insecta         | Diptera         | Syrphidae               |
| Globetails                      | Sphaerophoria spp.        | Insecta         | Diptera         | Syrphidae               |
| Eastern Calligrapher            | Toxomerus geminatus       | Insecta         | Diptera         | Syrphidae               |
| Margined Calligrapher           | Toxomerus marginatus      | Insecta         | Diptera         | Syrphidae               |
| Charcoal Deer Fly               | Chrysops carbonarius      | Insecta         | Diptera         | Tabanidae               |
| Gemeni Deer Fly                 | Chrysops geminatus        | Insecta         | Diptera         | Tabanidae               |
| Macquart's Deer Fly             | Chrysops macquarti        | Insecta         | Diptera         | Tabanidae               |
| Sacken's Deer Fly               | Chrysops sackeni          | Insecta         | Diptera         | Tabanidae               |
| One-striped Deer Fly            | Chrysops univittatus      | Insecta         | Diptera         | Tabanidae               |
|                                 | Hybomitra cincta          | Insecta         | Diptera         | Tabanidae               |
|                                 | Stonemyia spp.            | Insecta         | Diptera         | Tabanidae               |
| True Horse Flies                | Tabanus spp.              | Insecta         | Diptera         | Tabanidae               |
| Early Tachinid Fly              | Epalpus signifer          | Insecta         | Diptera         | Tachinidae              |

| Common Name                            | Scientific Name         | Taxonomic Class | Taxonomic Order | <b>Taxonomic Family</b> |
|----------------------------------------|-------------------------|-----------------|-----------------|-------------------------|
| Winsome Fly                            | Istocheta aldrichi      | Insecta         | Diptera         | Tachinidae              |
| •                                      | Tipula spp.             | Insecta         | Diptera         | Tipulidae               |
| INSECTS (TRUE BUGS)                    |                         | ·               |                 |                         |
| Pineapple-gall Adelgid                 | Adelges abietis         | Insecta         | Hemiptera       | Adelgidae               |
| Hemlock Woolly Adelgid                 | Adelges tsugae          | Insecta         | Hemiptera       | Adelgidae               |
| Pine Bark Adelgid                      | Pineus strobi           | Insecta         | Hemiptera       | Adelgidae               |
| -                                      | Trialeurodes pergandei  | Insecta         | Hemiptera       | Aleyrodidae             |
|                                        | Chaitophorus spp.       | Insecta         | Hemiptera       | Aphididae               |
| Birch Aphids                           | Euceraphis spp.         | Insecta         | Hemiptera       | Aphididae               |
| Large Daisy Aphids                     | Uroleucon spp.          | Insecta         | Hemiptera       | Aphididae               |
|                                        | Lepyronia coleoptrata   | Insecta         | Hemiptera       | Aphrophoridae           |
| Meadow Spittlebug                      | Philaenus spumarius     | Insecta         | Hemiptera       | Aphrophoridae           |
|                                        | Agallia spp.            | Insecta         | Hemiptera       | Cicadellidae            |
|                                        | Amphigonalia gothica    | Insecta         | Hemiptera       | Cicadellidae            |
|                                        | Draeculacephala spp.    | Insecta         | Hemiptera       | Cicadellidae            |
| Rhododendron Leafhopper                | Graphocephala fennahi   | Insecta         | Hemiptera       | Cicadellidae            |
|                                        | Idiodonus kennicotti    | Insecta         | Hemiptera       | Cicadellidae            |
|                                        | Oncopsis spp.           | Insecta         | Hemiptera       | Cicadellidae            |
|                                        | Plesiommata tripunctata | Insecta         | Hemiptera       | Cicadellidae            |
|                                        | Cixius spp.             | Insecta         | Hemiptera       | Cixiidae                |
|                                        | Melanoliarus spp.       | Insecta         | Hemiptera       | Cixiidae                |
|                                        | Merocoris distinctus    | Insecta         | Hemiptera       | Coreidae                |
|                                        | Cedusa spp.             | Insecta         | Hemiptera       | Derbidae                |
| Beech Scale                            | Cryptococcus fagisuga   | Insecta         | Hemiptera       | Eriococcidae            |
| North American Common Water<br>Strider | Aquarius remigis        | Insecta         | Hemiptera       | Gerridae                |
|                                        | Gerris spp.             | Insecta         | Hemiptera       | Gerridae                |
| Kayak Pond Skater                      | Limnoporus dissortis    | Insecta         | Hemiptera       | Gerridae                |
| -                                      | Telamona spp.           | Insecta         | Hemiptera       | Membracidae             |
|                                        | Ochterus banksi         | Insecta         | Hemiptera       | Ochteridae              |
|                                        | Phlegyas abbreviatus    | Insecta         | Hemiptera       | Pachygronthidae         |
| Green Stink Bug                        | Chinavia hilaris        | Insecta         | Hemiptera       | Pentatomidae            |
| Brown Stink Bugs                       | Euschistus spp.         | Insecta         | Hemiptera       | Pentatomidae            |
| -                                      | Fitchia aptera          | Insecta         | Hemiptera       | Reduviidae              |
|                                        | Galgupha spp.           | Insecta         | Hemiptera       | Thyreocoridae           |
|                                        |                         |                 |                 |                         |
| INSECTS (ANTS, BEES, WASPS,            | AND SAWFLIES)           |                 |                 |                         |
| Mining Bees                            | Andrena spp.            | Insecta         | Hymenoptera     | Andrenidae              |

| Common Name                             | Scientific Name            | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|-----------------------------------------|----------------------------|-----------------|-----------------|------------------|
| Western Honey Bee                       | Apis mellifera             | Insecta         | Hymenoptera     | Apidae           |
| Two-spotted Bumble Bee                  | Bombus bimaculatus         | Insecta         | Hymenoptera     | Apidae           |
| Yellowish Cuckoo Bumble bee             | Bombus flavidus            | Insecta         | Hymenoptera     | Apidae           |
| Brown-belted Bumble Bee                 | Bombus griseocollis        | Insecta         | Hymenoptera     | Apidae           |
| Common Eastern Bumble Bee               | Bombus impatiens           | Insecta         | Hymenoptera     | Apidae           |
| Perplexing Bumble Bee                   | Bombus perplexus           | Insecta         | Hymenoptera     | Apidae           |
|                                         | Hedychrum spp.             | Insecta         | Hymenoptera     | Chrysididae      |
| Modest Masked Bee                       | Hylaeus modestus           | Insecta         | Hymenoptera     | Colletidae       |
| Typical Weevil Wasps and Allies         | Cerceris spp.              | Insecta         | Hymenoptera     | Crabronidae      |
| Larger Empty Oak Apple Wasp             | Amphibolips quercusinanis  | Insecta         | Hymenoptera     | Cynipidae        |
| Introduced Pine Sawfly                  | Diprion similis            | Insecta         | Hymenoptera     | Diprionidae      |
| New York Carpenter Ant                  | Camponotus novaeboracensis | Insecta         | Hymenoptera     | Formicidae       |
| Eastern Black Carpenter Ant             | Camponotus pennsylvanicus  | Insecta         | Hymenoptera     | Formicidae       |
| Wood, Mound, and Field Ants             | Formica spp.               | Insecta         | Hymenoptera     | Formicidae       |
| Citronella Ants, Fuzzy Ants, and Allies | Lasius spp.                | Insecta         | Hymenoptera     | Formicidae       |
| Golden Sweat Bee                        | Augochlorella aurata       | Insecta         | Hymenoptera     | Halictidae       |
|                                         | Anomalon spp.              | Insecta         | Hymenoptera     | Ichneumonidae    |
|                                         | Cratichneumon spp.         | Insecta         | Hymenoptera     | Ichneumonidae    |
| Blueberry Stem Gall Wasp                | Hemadas nubilipennis       | Insecta         | Hymenoptera     | Ormyridae        |
|                                         | Priocnemis minorata        | Insecta         | Hymenoptera     | Pompilidae       |
|                                         | Dimorphopteryx spp.        | Insecta         | Hymenoptera     | Tenthredinidae   |
| Violet Leafmining Sawfly                | Nefusa ambigua             | Insecta         | Hymenoptera     | Tenthredinidae   |
| Amber-marked Birch Leaf-miner Sawfly    | Profenusa thomsoni         | Insecta         | Hymenoptera     | Tenthredinidae   |
|                                         | Strongylogaster spp.       | Insecta         | Hymenoptera     | Tenthredinidae   |
|                                         | Tenthredo spp.             | Insecta         | Hymenoptera     | Tenthredinidae   |
| Parasitic Aerial Yellowjacket           | Dolichovespula arctica     | Insecta         | Hymenoptera     | Vespidae         |
| Common Aerial Yellowjacket              | Dolichovespula arenaria    | Insecta         | Hymenoptera     | Vespidae         |
|                                         |                            |                 |                 |                  |
| INSECTS (BUTTERFLIES AND M              |                            |                 |                 |                  |
| Ridings' Fairy Moth                     | Adela ridingsella          | Insecta         | Lepidoptera     | Adelidae         |
| Ribbed Cocoon-Making Moths              | Bucculatricidae (Family)   | Insecta         | Lepidoptera     | Bucculatricidae  |
| Casebearers                             | Coleophora spp.            | Insecta         | Lepidoptera     | Coleophoridae    |
| Yellow-spotted Webworm Moth             | Anageshna primordialis     | Insecta         | Lepidoptera     | Crambidae        |
| White-spotted Sable                     | Anania funebris            | Insecta         | Lepidoptera     | Crambidae        |
| Small White Grass-veneer                | Crambus albellus           | Insecta         | Lepidoptera     | Crambidae        |
| Pasture Grass-veneer                    | Crambus saltuellus         | Insecta         | Lepidoptera     | Crambidae        |

| Common Name                    | Scientific Name                 | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|--------------------------------|---------------------------------|-----------------|-----------------|------------------|
|                                | Donacaula spp.                  | Insecta         | Lepidoptera     | Crambidae        |
| Pondside Crambid Moth          | Elophila icciusalis             | Insecta         | Lepidoptera     | Crambidae        |
| Diminutive Grass-veneer        | Raphiptera argillaceellus       | Insecta         | Lepidoptera     | Crambidae        |
| Double-striped Scoparia Moth   | Scoparia biplagialis            | Insecta         | Lepidoptera     | Crambidae        |
| Dark Brown Scoparia Moth       | Scoparia penumbralis            | Insecta         | Lepidoptera     | Crambidae        |
| Snowy Urola Moth               | Urola nivalis                   | Insecta         | Lepidoptera     | Crambidae        |
| Schlaeger's Fruitworm Moth     | Antaeotricha schlaegeri         | Insecta         | Lepidoptera     | Depressariidae   |
| Morbid Owlet                   | Chytolita morbidalis            | Insecta         | Lepidoptera     | Erebidae         |
| Yellow-collared Scape Moth     | Cisseps fulvicollis             | Insecta         | Lepidoptera     | Erebidae         |
| Milkweed Tussock Moth          | Euchaetes egle                  | Insecta         | Lepidoptera     | Erebidae         |
|                                | Halysidota spp.                 | Insecta         | Lepidoptera     | Erebidae         |
| Orange-spotted Idia Moth       | Idia diminuendis                | Insecta         | Lepidoptera     | Erebidae         |
| Slant-lined Owlet              | Macrochilo absorptalis          | Insecta         | Lepidoptera     | Erebidae         |
| Brown-lined Owlet              | Macrochilo litophora            | Insecta         | Lepidoptera     | Erebidae         |
| Maple Looper Moth              | Parallelia bistriaris           | Insecta         | Lepidoptera     | Erebidae         |
| Pale Phalaenostola Moth        | Phalaenostola metonalis         | Insecta         | Lepidoptera     | Erebidae         |
| Yellow-spotted Renia Moth      | Renia flavipunctalis            | Insecta         | Lepidoptera     | Erebidae         |
| Sober Renia Moth               | Renia sobrialis                 | Insecta         | Lepidoptera     | Erebidae         |
| Spotted Grass Moth             | Rivula propingualis             | Insecta         | Lepidoptera     | Erebidae         |
| Virginian Tiger Moth           | Spilosoma virginica             | Insecta         | Lepidoptera     | Erebidae         |
| Zale Moths                     | Zale spp.                       | Insecta         | Lepidoptera     | Erebidae         |
| Variable Fan-foot              | Zanclognatha laevigata          | Insecta         | Lepidoptera     | Erebidae         |
| Lettered Fan-foot              | Zanclognatha lituralis          | Insecta         | Lepidoptera     | Erebidae         |
|                                | Aristotelia spp.                | Insecta         | Lepidoptera     | Gelechiidae      |
| Cream-edged Dichomeris Moth    | Dichomeris flavocostella        | Insecta         | Lepidoptera     | Gelechiidae      |
| Goldenrod Elliptical-Gall Moth | Gnorimoschema gallaesolidaginis | Insecta         | Lepidoptera     | Gelechiidae      |
| •                              | Cabera spp.                     | Insecta         | Lepidoptera     | Geometridae      |
| Powder Moth                    | Eufidonia notataria             | Insecta         | Lepidoptera     | Geometridae      |
| Confused Eusarca Moth          | Eusarca confusaria              | Insecta         | Lepidoptera     | Geometridae      |
| Red-headed Inchworm Moth       | Macaria bisignata               | Insecta         | Lepidoptera     | Geometridae      |
| Lesser Maple Spanworm Moth     | Macaria pustularia              | Insecta         | Lepidoptera     | Geometridae      |
| Northern Petrophora Moth       | Petrophora subaequaria          | Insecta         | Lepidoptera     | Geometridae      |
| -                              | Probole spp.                    | Insecta         | Lepidoptera     | Geometridae      |
| Large Lace-border Moth         | Scopula limboundata             | Insecta         | Lepidoptera     | Geometridae      |
| Crocus Geometer Moths          | Xanthotype spp.                 | Insecta         | Lepidoptera     | Geometridae      |
| White Pine Barkminer Moth      | Marmara fasciella               | Insecta         | Lepidoptera     | Gracillariidae   |
|                                | Parornix spp.                   | Insecta         | Lepidoptera     | Gracillariidae   |

| Common Name                     | Scientific Name           | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|---------------------------------|---------------------------|-----------------|-----------------|------------------|
| Aspen Serpentine Leafminer Moth | Phyllocnistis populiella  | Insecta         | Lepidoptera     | Gracillariidae   |
|                                 | Antispila freemani        | Insecta         | Lepidoptera     | Heliozelidae     |
| Pepper and Salt Skipper         | Amblyscirtes hegon        | Insecta         | Lepidoptera     | Hesperiidae      |
| Delaware Skipper                | Anatrytone logan          | Insecta         | Lepidoptera     | Hesperiidae      |
| Least Skipper                   | Ancyloxypha numitor       | Insecta         | Lepidoptera     | Hesperiidae      |
| Arctic Skipper                  | Carterocephalus mandan    | Insecta         | Lepidoptera     | Hesperiidae      |
| Duskywings                      | Erynnis spp.              | Insecta         | Lepidoptera     | Hesperiidae      |
| Two-spotted Skipper             | Euphyes bimacula          | Insecta         | Lepidoptera     | Hesperiidae      |
| Black Dash                      | Euphyes conspicua         | Insecta         | Lepidoptera     | Hesperiidae      |
| Dun Skipper                     | Euphyes vestris           | Insecta         | Lepidoptera     | Hesperiidae      |
| Indian Skipper                  | Hesperia sassacus         | Insecta         | Lepidoptera     | Hesperiidae      |
| Hobomok Skipper                 | Lon hobomok               | Insecta         | Lepidoptera     | Hesperiidae      |
| Mulberry Wing                   | Poanes massasoit          | Insecta         | Lepidoptera     | Hesperiidae      |
| Long Dash                       | Polites mystic            | Insecta         | Lepidoptera     | Hesperiidae      |
| European Skipper                | Thymelicus lineola        | Insecta         | Lepidoptera     | Hesperiidae      |
| Little Glassywing               | Vernia verna              | Insecta         | Lepidoptera     | Hesperiidae      |
| Henry's Elfin                   | Callophrys henrici        | Insecta         | Lepidoptera     | Lycaenidae       |
| Holarctic Azures                | Celastrina spp.           | Insecta         | Lepidoptera     | Lycaenidae       |
| Goldcap Moss-Eater              | Epimartyria auricrinella  | Insecta         | Lepidoptera     | Micropterigidae  |
| •                               | Stigmella prunifoliella   | Insecta         | Lepidoptera     | Nepticulidae     |
|                                 | Stigmella quercipulchella | Insecta         | Lepidoptera     | Nepticulidae     |
| Curved Halter Moth              | Capis curvata             | Insecta         | Lepidoptera     | Noctuidae        |
| Brown-hooded Owlet              | Cucullia convexipennis    | Insecta         | Lepidoptera     | Noctuidae        |
| Bog Glyph                       | Deltote bellicula         | Insecta         | Lepidoptera     | Noctuidae        |
| Bilobed Looper Moth             | Megalographa biloba       | Insecta         | Lepidoptera     | Noctuidae        |
| Sigmoid Prominent               | Clostera albosigma        | Insecta         | Lepidoptera     | Notodontidae     |
| Unicorn Prominent               | Coelodasys unicornis      | Insecta         | Lepidoptera     | Notodontidae     |
| Great Spangled Fritillary       | Argynnis cybele           | Insecta         | Lepidoptera     | Nymphalidae      |
| Silver-bordered Fritillary      | Boloria myrina            | Insecta         | Lepidoptera     | Nymphalidae      |
| Common Wood-Nymph               | Cercyonis pegala          | Insecta         | Lepidoptera     | Nymphalidae      |
| Harris's Checkerspot            | Chlosyne harrisii         | Insecta         | Lepidoptera     | Nymphalidae      |
| Common Ringlet                  | Coenonympha california    | Insecta         | Lepidoptera     | Nymphalidae      |
| Northern Pearly-eye             | Lethe anthedon            | Insecta         | Lepidoptera     | Nymphalidae      |
| Appalachian Brown               | Lethe appalachia          | Insecta         | Lepidoptera     | Nymphalidae      |
| Eyed Brown                      | Lethe eurydice            | Insecta         | Lepidoptera     | Nymphalidae      |
| Red-spotted Admiral             | Limenitis arthemis        | Insecta         | Lepidoptera     | Nymphalidae      |
| Little Wood Satyr               | Megisto cymela            | Insecta         | Lepidoptera     | Nymphalidae      |

| Common Name                            | Scientific Name         | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|----------------------------------------|-------------------------|-----------------|-----------------|------------------|
| Crescents                              | Phyciodes spp.          | Insecta         | Lepidoptera     | Nymphalidae      |
| Red Admiral                            | Vanessa atalanta        | Insecta         | Lepidoptera     | Nymphalidae      |
| Three-spotted Concealer                | Eido trimaculella       | Insecta         | Lepidoptera     | Oecophoridae     |
| Newman's Mathildana Moth               | Mathildana newmanella   | Insecta         | Lepidoptera     | Oecophoridae     |
| Canadian Tiger Swallowtail             | Papilio canadensis      | Insecta         | Lepidoptera     | Papilionidae     |
| Common Bagworm Moth                    | Psyche casta            | Insecta         | Lepidoptera     | Psychidae        |
| Himmelman's and Busck's Plume<br>Moths | Geina spp.              | Insecta         | Lepidoptera     | Pterophoridae    |
| Polyphemus Moth                        | Antheraea polyphemus    | Insecta         | Lepidoptera     | Saturniidae      |
| Rosy Maple Moth                        | Dryocampa rubicunda     | Insecta         | Lepidoptera     | Saturniidae      |
| Waved Sphinx                           | Ceratomia undulosa      | Insecta         | Lepidoptera     | Sphingidae       |
| Northern Pine Sphinx                   | Lapara bombycoides      | Insecta         | Lepidoptera     | Sphingidae       |
| Apple Sphinxes                         | Sphinx spp.             | Insecta         | Lepidoptera     | Sphingidae       |
| Greenish Apple Moth                    | Clepsis virescana       | Insecta         | Lepidoptera     | Tortricidae      |
| White Pine Coneborer Moth              | Eucopina tocullionana   | Insecta         | Lepidoptera     | Tortricidae      |
|                                        | Eucosma spp.            | Insecta         | Lepidoptera     | Tortricidae      |
| Divided Olethreutes Moth               | Olethreutes bipartitana | Insecta         | Lepidoptera     | Tortricidae      |
|                                        | Olethreutes coruscana   | Insecta         | Lepidoptera     | Tortricidae      |
| Raspberry Leafroller Moth              | Olethreutes permundana  | Insecta         | Lepidoptera     | Tortricidae      |
| Dusky Leafroller Moth                  | Orthotaenia undulana    | Insecta         | Lepidoptera     | Tortricidae      |
| Bare-patched Leafroller Moth           | Pseudexentera spoliana  | Insecta         | Lepidoptera     | Tortricidae      |
|                                        | Sparganothis violaceana | Insecta         | Lepidoptera     | Tortricidae      |
| Mosaic Sparganothis Moth               | Sparganothis xanthoides | Insecta         | Lepidoptera     | Tortricidae      |
| INSECTS (SCORPIONFLIES, HA             | NCINCELIES AND ALLIES   |                 |                 |                  |
| INSECTS (SCORITONFLIES, IIA            | Panorpa spp.            | Insecta         | Mecoptera       | Panorpidae       |
|                                        | 1 unorpu spp.           | Ilisecta        | Wiccoptera      | 1 anorpidae      |
| INSECTS (ALDERFLIES, DOBSO             | ONFLIES, AND FISHFLIES) |                 |                 |                  |
| Serrate Dark Fishfly                   | Nigronia serricornis    | Insecta         | Megaloptera     | Corydalidae      |
| INSECTS (DRAGONFLIES AND               | DAMSELFLIES)            |                 |                 |                  |
| Canada Darner                          | Aeshna canadensis       | Insecta         | Odonata         | Aeshnidae        |
| Black-tipped Darner                    | Aeshna tuberculifera    | Insecta         | Odonata         | Aeshnidae        |
| Common Green Darner                    | Anax junius             | Insecta         | Odonata         | Aeshnidae        |
| River Jewelwing                        | Calopteryx aequabilis   | Insecta         | Odonata         | Calopterygidae   |
| Superb Jewelwing                       | Calopteryx amata        | Insecta         | Odonata         | Calopterygidae   |
| Ebony Jewelwing                        | Calopteryx maculata     | Insecta         | Odonata         | Calopterygidae   |
| Eastern Red Damsel                     | Amphiagrion saucium     | Insecta         | Odonata         | Coenagrionidae   |

| Common Name             | Scientific Name          | Taxonomic Class | Taxonomic Order | <b>Taxonomic Family</b> |
|-------------------------|--------------------------|-----------------|-----------------|-------------------------|
| Violet Dancer           | Argia fumipennis         | Insecta         | Odonata         | Coenagrionidae          |
| Variable Dancer         | Argia fumipennis         | Insecta         | Odonata         | Coenagrionidae          |
| Aurora Damsel           | Chromagrion conditum     | Insecta         | Odonata         | Coenagrionidae          |
| Bluets                  | Enallagma spp.           | Insecta         | Odonata         | Coenagrionidae          |
| Fragile Forktail        | Ischnura posita          | Insecta         | Odonata         | Coenagrionidae          |
| Eastern Forktail        | Ischnura verticalis      | Insecta         | Odonata         | Coenagrionidae          |
| Sphagnum Sprite         | Nehalennia gracilis      | Insecta         | Odonata         | Coenagrionidae          |
| Sedge Sprite            | Nehalennia irene         | Insecta         | Odonata         | Coenagrionidae          |
| Delta-spotted Spiketail | Zoraena diastatops       | Insecta         | Odonata         | Cordulegastridae        |
| Twin-spotted Spiketail  | Zoraena maculata         | Insecta         | Odonata         | Cordulegastridae        |
| Racket-tailed Emerald   | Dorocordulia libera      | Insecta         | Odonata         | Corduliidae             |
| Common Baskettail       | Epitheca cynosura        | Insecta         | Odonata         | Corduliidae             |
| Prince Baskettail       | Epitheca princeps        | Insecta         | Odonata         | Corduliidae             |
| Dragonhunter            | Hagenius brevistylus     | Insecta         | Odonata         | Gomphidae               |
| Mustached Clubtail      | Hylogomphus adelphus     | Insecta         | Odonata         | Gomphidae               |
| Southern Pygmy Clubtail | Lanthus vernalis         | Insecta         | Odonata         | Gomphidae               |
| Beaverpond Clubtail     | Phanogomphus borealis    | Insecta         | Odonata         | Gomphidae               |
| Harpoon Clubtail        | Phanogomphus descriptus  | Insecta         | Odonata         | Gomphidae               |
| Lancet Clubtail         | Phanogomphus exilis      | Insecta         | Odonata         | Gomphidae               |
| Eastern Least Clubtail  | Stylogomphus albistylus  | Insecta         | Odonata         | Gomphidae               |
| Calico Pennant          | Celithemis elisa         | Insecta         | Odonata         | Libellulidae            |
| Halloween Pennant       | Celithemis eponina       | Insecta         | Odonata         | Libellulidae            |
| Eastern Pondhawk        | Erythemis simplicicollis | Insecta         | Odonata         | Libellulidae            |
| Chalk-fronted Corporal  | Ladona julia             | Insecta         | Odonata         | Libellulidae            |
| Hudsonian Whiteface     | Leucorrhinia hudsonica   | Insecta         | Odonata         | Libellulidae            |
| Dot-tailed Whiteface    | Leucorrhinia intacta     | Insecta         | Odonata         | Libellulidae            |
| Spangled Skimmer        | Libellula cyanea         | Insecta         | Odonata         | Libellulidae            |
| Slaty Skimmer           | Libellula incesta        | Insecta         | Odonata         | Libellulidae            |
| Widow Skimmer           | Libellula luctuosa       | Insecta         | Odonata         | Libellulidae            |
| Twelve-spotted Skimmer  | Libellula pulchella      | Insecta         | Odonata         | Libellulidae            |
| Four-spotted Skimmer    | Libellula quadrimaculata | Insecta         | Odonata         | Libellulidae            |
| Elfin Skimmer           | Nannothemis bella        | Insecta         | Odonata         | Libellulidae            |
| Blue Dasher             | Pachydiplax longipennis  | Insecta         | Odonata         | Libellulidae            |
| Common Whitetail        | Plathemis lydia          | Insecta         | Odonata         | Libellulidae            |
| Meadowhawks             | Sympetrum spp.           | Insecta         | Odonata         | Libellulidae            |
| Two-striped Grasshopper | Melanoplus bivittatus    | Insecta         | Orthoptera      | Acrididae               |
| Scudder's Bush Katydids | Scudderia spp.           | Insecta         | Orthoptera      | Tettigoniidae           |

| Common Name                                          | Scientific Name           | Taxonomic Class | Taxonomic Order  | <b>Taxonomic Family</b> |
|------------------------------------------------------|---------------------------|-----------------|------------------|-------------------------|
|                                                      |                           |                 |                  |                         |
| INSECTS (STONEFLIES)                                 |                           |                 |                  |                         |
| NSEC15 (STONEFEIES)                                  | Alloperla spp.            | Insecta         | Plecoptera       | Chloroperlidae          |
| Rolled-winged Stoneflies                             | Leuctridae (Family)       | Insecta         | Plecoptera       | Leuctridae              |
| Forestflies                                          | Nemouridae (Family)       | Insecta         | Plecoptera       | Nemouridae              |
|                                                      | , , ,                     |                 | *                |                         |
| INSECTS (BARKLICE, BOOKLICE                          | E, AND PARASITIC LICE)    |                 |                  |                         |
| Barklice, Booklice, and Parasitic Lice               | Psocodea (Order)          | Insecta         | Psocodea         | [unidentified]          |
| INCECTO (CADDICELIES)                                |                           |                 |                  |                         |
| INSECTS (CADDISFLIES)                                | H 1 (F :1)                | T               | T. 1             | II. 1 1 ' 1             |
| Net-spinning Caddisflies Giant Casemaker Caddisflies | Hydropsychidae (Family)   | Insecta         | Trichoptera      | Hydropsychidae          |
| Giant Casemaker Caddistiles                          | Phryganeidae (Family)     | Insecta         | Trichoptera      | Phryganeidae            |
|                                                      | Rhyacophila spp.          | Insecta         | Trichoptera      | Rhyacophilidae          |
| AMPHIBIANS                                           |                           |                 |                  |                         |
| Spring Peeper                                        | Pseudacris crucifer       | Amphibia        | Anura            | Hylidae                 |
| American Bullfrog                                    | Lithobates catesbeianus   | Amphibia        | Anura            | Ranidae                 |
| Green Frog                                           | Lithobates clamitans      | Amphibia        | Anura            | Ranidae                 |
| Wood Frog                                            | Lithobates sylvaticus     | Amphibia        | Anura            | Ranidae                 |
| Spotted Salamander                                   | Ambystoma maculatum       | Amphibia        | Caudata          | Ambystomatidae          |
| Eastern Newt                                         | Notophthalmus viridescens | Amphibia        | Caudata          | Salamandridae           |
| BIRDS                                                |                           |                 |                  |                         |
| American Goshawk                                     | Accipiter atricapillus    | Aves            | Accipitriformes  | Accipitridae            |
| Red-tailed Hawk                                      | Buteo jamaicensis         | Aves            | Accipitriformes  | Accipitridae            |
| Red-shouldered Hawk                                  | Buteo lineatus            | Aves            | Accipitriformes  | Accipitridae            |
| Broad-winged Hawk                                    | Buteo platypterus         | Aves            | Accipitriformes  | Accipitridae            |
| Wood Duck                                            | Aix sponsa                | Aves            | Anseriformes     | Anatidae                |
| Mallard                                              | Anas platyrhynchos        | Aves            | Anseriformes     | Anatidae                |
| Canada Goose                                         | Branta canadensis         | Aves            | Anseriformes     | Anatidae                |
| Chimney Swift                                        | Chaetura pelagica         | Aves            | Caprimulgiformes | Apodidae                |
| Ruby-throated Hummingbird                            | Archilochus colubris      | Aves            | Caprimulgiformes | Trochilidae             |
| Spotted Sandpiper                                    | Actitis macularius        | Aves            | Charadriiformes  | Scolopacidae            |
| Mourning Dove                                        | Zenaida macroura          | Aves            | Columbiformes    | Columbidae              |
| Yellow-billed Cuckoo                                 | Coccyzus americanus       | Aves            | Cuculiformes     | Cuculidae               |
| Ruffed Grouse                                        | Bonasa umbellus           | Aves            | Galliformes      | Phasianidae             |

| Common Name                  | Scientific Name         | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|------------------------------|-------------------------|-----------------|-----------------|------------------|
| Wild Turkey                  | Meleagris gallopavo     | Aves            | Galliformes     | Phasianidae      |
| Cedar Waxwing                | Bombycilla cedrorum     | Aves            | Passeriformes   | Bombycillidae    |
| Rose-breasted Grosbeak       | Pheucticus ludovicianus | Aves            | Passeriformes   | Cardinalidae     |
| Scarlet Tanager              | Piranga olivacea        | Aves            | Passeriformes   | Cardinalidae     |
| Brown Creeper                | Certhia americana       | Aves            | Passeriformes   | Certhiidae       |
| American Crow                | Corvus brachyrhynchos   | Aves            | Passeriformes   | Corvidae         |
| Common Raven                 | Corvus corax            | Aves            | Passeriformes   | Corvidae         |
| Blue Jay                     | Cyanocitta cristata     | Aves            | Passeriformes   | Corvidae         |
| Purple Finch                 | Haemorhous purpureus    | Aves            | Passeriformes   | Fringillidae     |
| Red Crossbill                | Loxia curvirostra       | Aves            | Passeriformes   | Fringillidae     |
| Pine Siskin                  | Spinus pinus            | Aves            | Passeriformes   | Fringillidae     |
| American Goldfinch           | Spinus tristis          | Aves            | Passeriformes   | Fringillidae     |
| Barn Swallow                 | Hirundo rustica         | Aves            | Passeriformes   | Hirundinidae     |
| Tree Swallow                 | Tachycineta bicolor     | Aves            | Passeriformes   | Hirundinidae     |
| Red-winged Blackbird         | Agelaius phoeniceus     | Aves            | Passeriformes   | Icteridae        |
| Common Grackle               | Quiscalus quiscula      | Aves            | Passeriformes   | Icteridae        |
| Gray Catbird                 | Dumetella carolinensis  | Aves            | Passeriformes   | Mimidae          |
| Tufted Titmouse              | Baeolophus bicolor      | Aves            | Passeriformes   | Paridae          |
| Black-capped Chickadee       | Poecile atricapillus    | Aves            | Passeriformes   | Paridae          |
| Canada Warbler               | Cardellina canadensis   | Aves            | Passeriformes   | Parulidae        |
| Common Yellowthroat          | Geothlypis trichas      | Aves            | Passeriformes   | Parulidae        |
| Nashville Warbler            | Leiothlypis ruficapilla | Aves            | Passeriformes   | Parulidae        |
| Black-and-white Warbler      | Mniotilta varia         | Aves            | Passeriformes   | Parulidae        |
| Northern Waterthrush         | Parkesia noveboracensis | Aves            | Passeriformes   | Parulidae        |
| Ovenbird                     | Seiurus aurocapilla     | Aves            | Passeriformes   | Parulidae        |
| Black-throated Blue Warbler  | Setophaga caerulescens  | Aves            | Passeriformes   | Parulidae        |
| Yellow-rumped Warbler        | Setophaga coronata      | Aves            | Passeriformes   | Parulidae        |
| Prairie Warbler              | Setophaga discolor      | Aves            | Passeriformes   | Parulidae        |
| Blackburnian Warbler         | Setophaga fusca         | Aves            | Passeriformes   | Parulidae        |
| Chestnut-sided Warbler       | Setophaga pensylvanica  | Aves            | Passeriformes   | Parulidae        |
| Pine Warbler                 | Setophaga pinus         | Aves            | Passeriformes   | Parulidae        |
| Black-throated Green Warbler | Setophaga virens        | Aves            | Passeriformes   | Parulidae        |
| Dark-eyed Junco              | Junco hyemalis          | Aves            | Passeriformes   | Passerellidae    |
| Swamp Sparrow                | Melospiza georgiana     | Aves            | Passeriformes   | Passerellidae    |
| Song Sparrow                 | Melospiza melodia       | Aves            | Passeriformes   | Passerellidae    |
| Eastern Towhee               | Pipilo erythrophthalmus | Aves            | Passeriformes   | Passerellidae    |
| Chipping Sparrow             | Spizella passerina      | Aves            | Passeriformes   | Passerellidae    |

| Common Name                | Scientific Name          | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|----------------------------|--------------------------|-----------------|-----------------|------------------|
| White-throated Sparrow     | Zonotrichia albicollis   | Aves            | Passeriformes   | Passerellidae    |
| White-throated Sparrow     | Zonotrichia albicollis   | Aves            | Passeriformes   | Passerellidae    |
| Ruby-crowned Kinglet       | Corthylio calendula      | Aves            | Passeriformes   | Regulidae        |
| Golden-crowned Kinglet     | Regulus satrapa          | Aves            | Passeriformes   | Regulidae        |
| Red-breasted Nuthatch      | Sitta canadensis         | Aves            | Passeriformes   | Sittidae         |
| White-breasted Nuthatch    | Sitta carolinensis       | Aves            | Passeriformes   | Sittidae         |
| Northern House Wren        | Troglodytes aedon        | Aves            | Passeriformes   | Troglodytidae    |
| Winter Wren                | Troglodytes hiemalis     | Aves            | Passeriformes   | Troglodytidae    |
| Veery                      | Catharus fuscescens      | Aves            | Passeriformes   | Turdidae         |
| Hermit Thrush              | Catharus guttatus        | Aves            | Passeriformes   | Turdidae         |
| American Robin             | Turdus migratorius       | Aves            | Passeriformes   | Turdidae         |
| Eastern Wood-Pewee         | Contopus virens          | Aves            | Passeriformes   | Tyrannidae       |
| Alder Flycatcher           | Empidonax alnorum        | Aves            | Passeriformes   | Tyrannidae       |
| Acadian Flycatcher         | Empidonax virescens      | Aves            | Passeriformes   | Tyrannidae       |
| Great Crested Flycatcher   | Myiarchus crinitus       | Aves            | Passeriformes   | Tyrannidae       |
| Eastern Phoebe             | Sayornis phoebe          | Aves            | Passeriformes   | Tyrannidae       |
| Red-eyed Vireo             | Vireo olivaceus          | Aves            | Passeriformes   | Vireonidae       |
| Blue-headed Vireo          | Vireo solitarius         | Aves            | Passeriformes   | Vireonidae       |
| Great Blue Heron           | Ardea herodias           | Aves            | Pelecaniformes  | Ardeidae         |
| Northern Flicker           | Colaptes auratus         | Aves            | Piciformes      | Picidae          |
| Downy Woodpecker           | Dryobates pubescens      | Aves            | Piciformes      | Picidae          |
| Hairy Woodpecker           | Dryobates villosus       | Aves            | Piciformes      | Picidae          |
| Pileated Woodpecker        | Dryocopus pileatus       | Aves            | Piciformes      | Picidae          |
| Red-bellied Woodpecker     | Melanerpes carolinus     | Aves            | Piciformes      | Picidae          |
| Yellow-bellied Sapsucker   | Sphyrapicus varius       | Aves            | Piciformes      | Picidae          |
| Barred Owl                 | Strix varia              | Aves            | Strigiformes    | Strigidae        |
| MAMMALS                    |                          |                 |                 |                  |
| Moose                      | Alces alces              | Mammalia        | Artiodactyla    | Cervidae         |
| White-tailed Deer          | Odocoileus virginianus   | Mammalia        | Artiodactyla    | Cervidae         |
| Coyote                     | Canis latrans            | Mammalia        | Carnivora       | Canidae          |
| Gray Fox                   | Urocyon cinereoargenteus | Mammalia        | Carnivora       | Canidae          |
| Red Fox                    | Vulpes vulpes            | Mammalia        | Carnivora       | Canidae          |
| Bobcat                     | Lynx rufus               | Mammalia        | Carnivora       | Felidae          |
| North American River Otter | Lontra canadensis        | Mammalia        | Carnivora       | Mustelidae       |
| Long-tailed Weasel         | Neogale frenata          | Mammalia        | Carnivora       | Mustelidae       |
| Fisher                     | Pekania pennanti         | Mammalia        | Carnivora       | Mustelidae       |

| Common Name                  | Scientific Name           | Taxonomic Class | Taxonomic Order   | Taxonomic Family   |
|------------------------------|---------------------------|-----------------|-------------------|--------------------|
| Common Raccoon               | Procyon lotor             | Mammalia        | Carnivora         | Procyonidae        |
| American Black Bear          | Ursus americanus          | Mammalia        | Carnivora         | Ursidae            |
| Virginia Opossum             | Didelphis virginiana      | Mammalia        | Didelphimorphia   | Didelphidae        |
| American Beaver              | Castor canadensis         | Mammalia        | Rodentia          | Castoridae         |
| North American Porcupine     | Erethizon dorsatum        | Mammalia        | Rodentia          | Erethizontidae     |
| Eastern Gray Squirrel        | Sciurus carolinensis      | Mammalia        | Rodentia          | Sciuridae          |
| Eastern Chipmunk             | Tamias striatus           | Mammalia        | Rodentia          | Sciuridae          |
| American Red Squirrel        | Tamiasciurus hudsonicus   | Mammalia        | Rodentia          | Sciuridae          |
| REPTILES                     |                           |                 |                   |                    |
| Smooth Greensnake            | Opheodrys vernalis        | Reptilia        | Squamata          | Colubridae         |
| Common Garter Snake          | Thamnophis sirtalis       | Reptilia        | Squamata          | Colubridae         |
| GASTROPODS                   |                           |                 |                   |                    |
| Arion Slugs                  | Arion spp.                | Gastropoda      | Stylommatophora   | Arionidae          |
|                              | Megapallifera spp.        | Gastropoda      | Stylommatophora   | Philomycidae       |
| Winding Mantleslug           | Philomycus flexuolaris    | Gastropoda      | Stylommatophora   | Philomycidae       |
| Beech Leaf Disease           | Litylenchus crenatae      | Chromadorea     | Rhabditida        | Anguinidae         |
| FUNGI AND LICHEN             |                           |                 |                   |                    |
| Mountain Laurel Leaf Spot    | Mycosphaerella colorata   | Dothideomycetes | Mycosphaerellales | Mycosphaerellaceae |
| Common Strawberry Spot       | Ramularia grevilleana     | Dothideomycetes | Mycosphaerellales | Mycosphaerellaceae |
| Speckled Blister Lichen      | Viridothelium virens      | Dothideomycetes | Trypetheliales    | Trypetheliaceae    |
| Mealy Pixie Cup              | Cladonia chlorophaea      | Lecanoromycetes | Lecanorales       | Cladoniaceae       |
| British soldier lichen       | Cladonia cristatella      | Lecanoromycetes | Lecanorales       | Cladoniaceae       |
| many-forked cladonia         | Cladonia furcata          | Lecanoromycetes | Lecanorales       | Cladoniaceae       |
| Lipstick Powderhorn          | Cladonia macilenta        | Lecanoromycetes | Lecanorales       | Cladoniaceae       |
| Red-fruited Pixie Cup        | Cladonia pleurota         | Lecanoromycetes | Lecanorales       | Cladoniaceae       |
| Dragon Horn                  | Cladonia squamosa         | Lecanoromycetes | Lecanorales       | Cladoniaceae       |
| common greenshield lichen    | Flavoparmelia caperata    | Lecanoromycetes | Lecanorales       | Parmeliaceae       |
| Bottlebrush Shield Lichen    | Parmelia squarrosa        | Lecanoromycetes | Lecanorales       | Parmeliaceae       |
| rough speckled shield lichen | Punctelia rudecta         | Lecanoromycetes | Lecanorales       | Parmeliaceae       |
| beard lichens                | Usnea spp.                | Lecanoromycetes | Lecanorales       | Parmeliaceae       |
| Yellow Ribbon Lichen         | Usnocetraria oakesiana    | Lecanoromycetes | Lecanorales       | Parmeliaceae       |
| Smokey-eyed Boulder Lichen   | Porpidia albocaerulescens | Lecanoromycetes | Lecideales        | Lecideaceae        |
| concentric boulder lichen    | Porpidia crustulata       | Lecanoromycetes | Lecideales        | Lecideaceae        |
| Common Script Lichen         | Graphis scripta           | Lecanoromycetes | Ostropales        | Graphidaceae       |

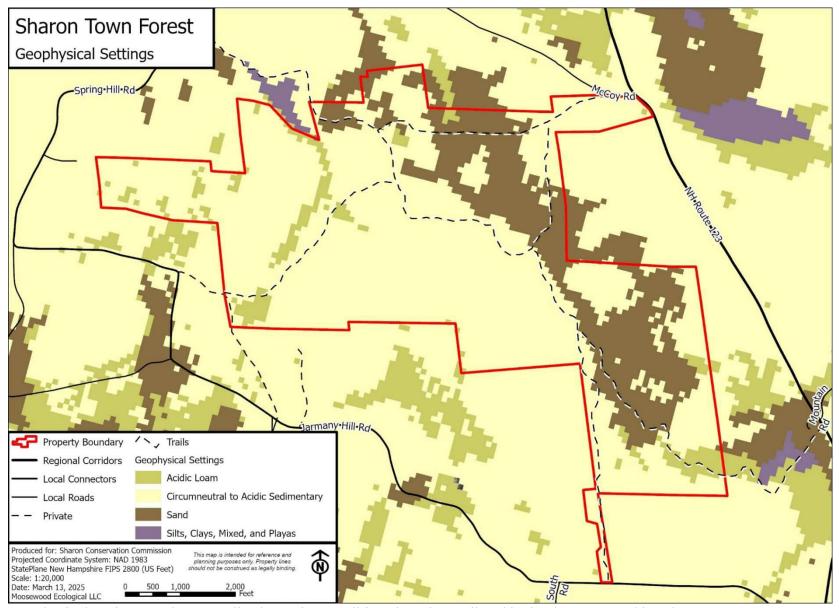
| Common Name                   | Scientific Name          | Taxonomic Class      | Taxonomic Order  | Taxonomic Family  |
|-------------------------------|--------------------------|----------------------|------------------|-------------------|
| Pink Earth Lichen             | Dibaeis baeomyces        | Lecanoromycetes      | Pertusariales    | Icmadophilaceae   |
| Smooth Rock Tripe             | Umbilicaria mammulata    | Lecanoromycetes      | Umbilicariales   | Umbilicariaceae   |
| -                             | Mitrulaceae (Family)     | Leotiomycetes        | Helotiales       | Mitrulaceae       |
| Chicken Lips                  | Leotia viscosa           | Leotiomycetes        | Leotiales        | Leotiaceae        |
| Earth Tongues                 | Geoglossum spp.          | Lichinomycetes       | Geoglossales     | Geoglossaceae     |
|                               | Tubakia spp.             | Sordariomycetes      | Diaporthales     | Tubakiaceae       |
| Beech Bark Canker Fungus      | Neonectria faginata      | Sordariomycetes      | Hypocreales      | Nectriaceae       |
| Beechwood Woodwart            | Jackrogersella cohaerens | Sordariomycetes      | Xylariales       | Hypoxylaceae      |
| amanita mushrooms             | Amanita spp.             | Agaricomycetes       | Agaricales       | Amanitaceae       |
| Golden Spindles               | Clavulinopsis fusiformis | Agaricomycetes       | Agaricales       | Clavariaceae      |
| orange gilled waxcap          | Humidicutis marginata    | Agaricomycetes       | Agaricales       | Hygrophoraceae    |
| Waxcaps                       | Hygrocybe spp.           | Agaricomycetes       | Agaricales       | Hygrophoraceae    |
|                               | Apioperdon spp.          | Agaricomycetes       | Agaricales       | Lycoperdaceae     |
| Oyster Mushrooms              | Pleurotus spp.           | Agaricomycetes       | Agaricales       | Pleurotaceae      |
| chaga                         | Inonotus obliquus        | Agaricomycetes       | Hymenochaetales  | Hymenochaetaceae  |
| birch polypore                | Fomitopsis betulina      | Agaricomycetes       | Polyporales      | Fomitopsidaceae   |
| Smoky polypore                | Bjerkandera adusta       | Agaricomycetes       | Polyporales      | Phanerochaetaceae |
| Tinder Polypore               | Fomes excavatus          | Agaricomycetes       | Polyporales      | Polyporaceae      |
| hemlock varnish shelf         | Ganoderma tsugae         | Agaricomycetes       | Polyporales      | Polyporaceae      |
| crown-tipped coral fungus     | Artomyces pyxidatus      | Agaricomycetes       | Russulales       | Auriscalpiaceae   |
| Orange Jelly Spot             | Dacrymyces chrysospermus | Dacrymycetes         | Dacrymycetales   | Dacrymycetaceae   |
| Lingonberry Gall              | Exobasidium vaccinii     | Exobasidiomycetes    | Exobasidiales    | Exobasidiaceae    |
| goldenrod rust                | Coleosporium solidaginis | Pucciniomycetes      | Pucciniales      | Coleosporiaceae   |
| white pine blister rust       | Cronartium ribicola      | Pucciniomycetes      | Pucciniales      | Coleosporiaceae   |
| blackberry orange rust        | Gymnoconia peckiana      | Pucciniomycetes      | Pucciniales      | Phragmidiaceae    |
| Crown Rust                    | Puccinia coronata        | Pucciniomycetes      | Pucciniales      | Pucciniaceae      |
|                               | Uromyces halstedii       | Pucciniomycetes      | Pucciniales      | Pucciniaceae      |
| Huckleberry Broom Rust Fungus | Calyptospora columnaris  | Pucciniomycetes      | Pucciniales      | Pucciniastraceae  |
| snow fungus                   | Tremella fuciformis      | Tremellomycetes      | Tremellales      | Tremellaceae      |
|                               | Furia ithacensis         | Entomophthoromycetes | Entomophthorales | Entomophthoraceae |
|                               |                          |                      |                  |                   |
| PLANTS                        |                          |                      |                  |                   |
|                               | Aulacomnium spp.         | Bryopsida            | Aulacomniales    | Aulacomniaceae    |
| Calcareous and Allied Mosses  | Mnium spp.               | Bryopsida            | Bryales          | Mniaceae          |
| Thyme and Allied Mosses       | Plagiomnium spp.         | Bryopsida            | Bryales          | Mniaceae          |
|                               | Rhizomnium spp.          | Bryopsida            | Bryales          | Mniaceae          |
| Forkmosses                    | Dicranum spp.            | Bryopsida            | Dicranales       | Dicranaceae       |

| Common Name                   | Scientific Name           | Taxonomic Class   | Taxonomic Order | <b>Taxonomic Family</b> |
|-------------------------------|---------------------------|-------------------|-----------------|-------------------------|
| Pincushion Moss               | Leucobryum glaucum        | Bryopsida         | Dicranales      | Leucobryaceae           |
| Ciliate Hoarmoss              | Hedwigia ciliata          | Bryopsida         | Hedwigiales     | Hedwigiaceae            |
| Heart-leaved Spear-moss       | Calliergon cordifolium    | Bryopsida         | Hypnales        | Calliergonaceae         |
| Willow Moss                   | Fontinalis antipyretica   | Bryopsida         | Hypnales        | Fontinalaceae           |
| New England Willowmoss        | Fontinalis novae-angliae  | Bryopsida         | Hypnales        | Fontinalaceae           |
|                               | Fontinalis sphagnifolia   | Bryopsida         | Hypnales        | Fontinalaceae           |
| Red-stemmed Feather Moss      | Pleurozium schreberi      | Bryopsida         | Hypnales        | Hylocomiaceae           |
| brocade moss                  | Callicladium imponens     | Bryopsida         | Hypnales        | Нурпасеае               |
| Ostrich-plume Moss            | Ptilium crista-castrensis | Bryopsida         | Hypnales        | Pylaisiaceae            |
| fern mosses                   | Thuidium spp.             | Bryopsida         | Hypnales        | Thuidiaceae             |
| Crisped Pincushion complex    | Ulota spp.                | Bryopsida         | Orthotrichales  | Orthotrichaceae         |
| Common Haircap Moss           | Polytrichum commune       | Polytrichopsida   | Polytrichales   | Polytrichaceae          |
| Bog Haircap Moss              | Polytrichum strictum      | Polytrichopsida   | Polytrichales   | Polytrichaceae          |
| Sphagnum mosses               | Sphagnum spp.             | Sphagnopsida      | Sphagnales      | Sphagnaceae             |
|                               | Calypogeia spp.           | Jungermanniopsida | Jungermanniales | Calypogeiaceae          |
| greater whipwort              | Bazzania trilobata        | Jungermanniopsida | Jungermanniales | Lepidoziaceae           |
| Grove Earwort                 | Scapania nemorea          | Jungermanniopsida | Jungermanniales | Scapaniaceae            |
| Water Earwort                 | Scapania undulata         | Jungermanniopsida | Jungermanniales | Scapaniaceae            |
| Ribbonwort                    | Pallavicinia lyellii      | Jungermanniopsida | Pallaviciniales | Pallaviciniaceae        |
| common pellia                 | Pellia epiphylla          | Jungermanniopsida | Pelliales       | Pelliaceae              |
| New York Scalewort            | Frullania eboracensis     | Jungermanniopsida | Porellales      | Frullaniaceae           |
| Flat-leaved Scalewort         | Radula complanata         | Jungermanniopsida | Porellales      | Radulaceae              |
| Tree Fringewort               | Ptilidium pulcherrimum    | Jungermanniopsida | Ptilidiales     | Ptilidiaceae            |
| Jack-in-the-Pulpits complex   | Arisaema spp.             | Liliopsida        | Alismatales     | Araceae                 |
| marsh calla                   | Calla palustris           | Liliopsida        | Alismatales     | Araceae                 |
| ribbon-leaved pondweed        | Potamogeton epihydrus     | Liliopsida        | Alismatales     | Potamogetonaceae        |
| Canada mayflower              | Maianthemum canadense     | Liliopsida        | Asparagales     | Asparagaceae            |
| Solomon's plume               | Maianthemum racemosum     | Liliopsida        | Asparagales     | Asparagaceae            |
| hairy Solomon's-seal          | Polygonatum pubescens     | Liliopsida        | Asparagales     | Asparagaceae            |
| Yellow Iris                   | Iris pseudacorus          | Liliopsida        | Asparagales     | Iridaceae               |
| northern blue flag            | Iris versicolor           | Liliopsida        | Asparagales     | Iridaceae               |
| blue-eyed grasses             | Sisyrinchium spp.         | Liliopsida        | Asparagales     | Iridaceae               |
| pink lady's slipper           | Cypripedium acaule        | Liliopsida        | Asparagales     | Orchidaceae             |
| downy rattlesnake plantain    | Goodyera pubescens        | Liliopsida        | Asparagales     | Orchidaceae             |
| small green wood orchid       | Platanthera clavellata    | Liliopsida        | Asparagales     | Orchidaceae             |
| Greater Purple Fringed Orchid | Platanthera grandiflora   | Liliopsida        | Asparagales     | Orchidaceae             |
| Rose Pogonia                  | Pogonia ophioglossoides   | Liliopsida        | Asparagales     | Orchidaceae             |

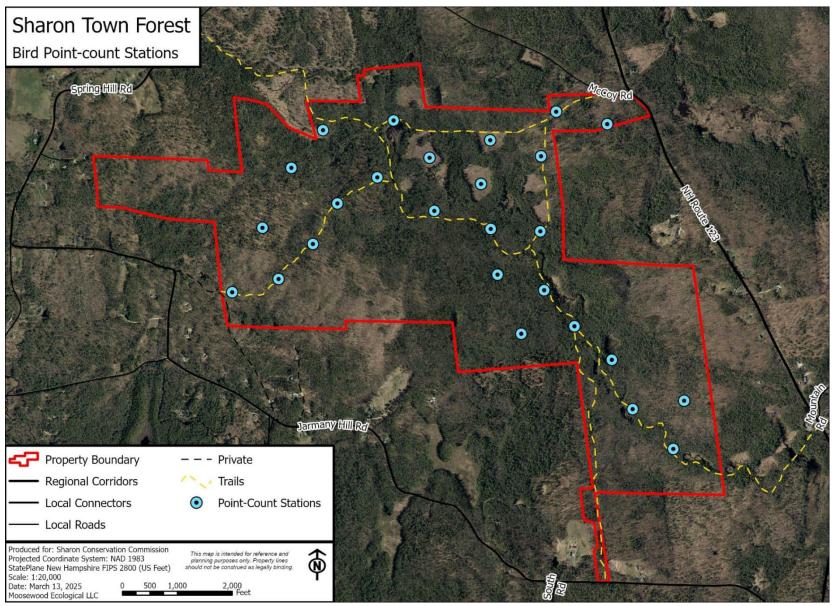
| Common Name               | Scientific Name                    | Taxonomic Class | Taxonomic Order | <b>Taxonomic Family</b> |
|---------------------------|------------------------------------|-----------------|-----------------|-------------------------|
| sessile bellwort          | Uvularia sessilifolia              | Liliopsida      | Liliales        | Colchicaceae            |
| bluebead lily             | Clintonia borealis                 | Liliopsida      | Liliales        | Liliaceae               |
| Cucumber Root             | Medeola virginiana                 | Liliopsida      | Liliales        | Liliaceae               |
| red trillium              | Trillium erectum                   | Liliopsida      | Liliales        | Melanthiaceae           |
| painted trillium          | Trillium undulatum                 | Liliopsida      | Liliales        | Melanthiaceae           |
| green false hellebore     | Veratrum viride                    | Liliopsida      | Liliales        | Melanthiaceae           |
| white-edge sedge          | Carex debilis                      | Liliopsida      | Poales          | Cyperaceae              |
| northern long sedge       | Carex folliculata                  | Liliopsida      | Poales          | Cyperaceae              |
| nodding sedge             | Carex gynandra                     | Liliopsida      | Poales          | Cyperaceae              |
| bladder sedge             | Carex intumescens                  | Liliopsida      | Poales          | Cyperaceae              |
| sallow sedge              | Carex lurida                       | Liliopsida      | Poales          | Cyperaceae              |
| Greater Straw Sedge       | Carex normalis                     | Liliopsida      | Poales          | Cyperaceae              |
| eastern rough sedge       | Carex scabrata                     | Liliopsida      | Poales          | Cyperaceae              |
| pointed broom sedge       | Carex scoparia                     | Liliopsida      | Poales          | Cyperaceae              |
| tussock sedge             | Carex stricta                      | Liliopsida      | Poales          | Cyperaceae              |
| threeseeded sedge         | Carex trisperma                    | Liliopsida      | Poales          | Cyperaceae              |
| Northwest Territory sedge | Carex utriculata                   | Liliopsida      | Poales          | Cyperaceae              |
| Three-way Sedge           | Dulichium arundinaceum             | Liliopsida      | Poales          | Cyperaceae              |
| Blunt Spikerush           | Eleocharis obtusa                  | Liliopsida      | Poales          | Cyperaceae              |
| tawny cotton-grass        | Eriophorum virginicum              | Liliopsida      | Poales          | Cyperaceae              |
| brownish beaked-rush      | Rhynchospora capitellata           | Liliopsida      | Poales          | Cyperaceae              |
| woolgrass                 | Scirpus cyperinus                  | Liliopsida      | Poales          | Cyperaceae              |
| mosquito bulrush          | Scirpus hattorianus                | Liliopsida      | Poales          | Cyperaceae              |
| Panicled Bulrush          | Scirpus microcarpus                | Liliopsida      | Poales          | Cyperaceae              |
| rushes                    | Juncus spp.                        | Liliopsida      | Poales          | Juncaceae               |
| woodrushes                | Luzula spp.                        | Liliopsida      | Poales          | Juncaceae               |
| sweet vernal grass        | Anthoxanthum odoratum              | Liliopsida      | Poales          | Poaceae                 |
| Shorthusks                | Brachyelytrum spp.                 | Liliopsida      | Poales          | Poaceae                 |
| canadian bluejoint        | Calamagrostis canadensis           | Liliopsida      | Poales          | Poaceae                 |
| Oatgrasses                | Danthonia spp.                     | Liliopsida      | Poales          | Poaceae                 |
| deertongue                | Dichanthelium clandestinum         | Liliopsida      | Poales          | Poaceae                 |
|                           | Dichanthelium acuminatum (complex) | Liliopsida      | Poales          | Poaceae                 |
| rattlesnake mannagrass    | Glyceria canadensis                | Liliopsida      | Poales          | Poaceae                 |
| Slender Mannagrass        | Glyceria melicaria                 | Liliopsida      | Poales          | Poaceae                 |
| rice cutgrass             | Leersia oryzoides                  | Liliopsida      | Poales          | Poaceae                 |
| American bur-reed         | Sparganium americanum              | Liliopsida      | Poales          | Typhaceae               |
| Cattails                  | Typha spp.                         | Liliopsida      | Poales          | Typhaceae               |

| Common Name                 | Scientific Name              | Taxonomic Class                                          | Taxonomic Order | Taxonomic Family |
|-----------------------------|------------------------------|----------------------------------------------------------|-----------------|------------------|
| prickly tree-clubmoss       | Dendrolycopodium dendroideum | Dendrolycopodium dendroideum Lycopodiopsida Lycopodiales |                 | Lycopodiaceae    |
| Hickey's tree-clubmoss      | Dendrolycopodium hickeyi     | Lycopodiopsida                                           | Lycopodiales    | Lycopodiaceae    |
| flat-branched tree-clubmoss | Dendrolycopodium obscurum    | Lycopodiopsida                                           | Lycopodiales    | Lycopodiaceae    |
| fan clubmoss                | Diphasiastrum digitatum      | Lycopodiopsida                                           | Lycopodiales    | Lycopodiaceae    |
| blue clubmoss               | Diphasiastrum tristachyum    | Lycopodiopsida                                           | Lycopodiales    | Lycopodiaceae    |
| shining firmoss             | Huperzia lucidula            | Lycopodiopsida                                           | Lycopodiales    | Lycopodiaceae    |
| stag's-horn clubmoss        | Lycopodium clavatum          | Lycopodiopsida                                           | Lycopodiales    | Lycopodiaceae    |
| interrupted clubmoss        | Spinulum annotinum           | Lycopodiopsida                                           | Lycopodiales    | Lycopodiaceae    |
| golden Alexanders           | Zizia aurea                  | Magnoliopsida                                            | Apiales         | Apiaceae         |
| bristly sarsaparilla        | Aralia hispida               | Magnoliopsida                                            | Apiales         | Araliaceae       |
| wild sarsaparilla           | Aralia nudicaulis            | Magnoliopsida                                            | Apiales         | Araliaceae       |
| American Water-pennywort    | Hydrocotyle americana        | Magnoliopsida                                            | Apiales         | Araliaceae       |
| dwarf ginseng               | Panax trifolius              | Magnoliopsida                                            | Apiales         | Araliaceae       |
| Mountain holly              | Ilex mucronata               | Magnoliopsida                                            | Aquifoliales    | Aquifoliaceae    |
| winterberry holly           | Ilex verticillata            | Magnoliopsida                                            | Aquifoliales    | Aquifoliaceae    |
| Bull Thistle                | Cirsium vulgare              | Magnoliopsida                                            | Asterales       | Asteraceae       |
| flat-top white aster        | Doellingeria umbellata       | Magnoliopsida                                            | Asterales       | Asteraceae       |
| American burnweed           | Erechtites hieraciifolius    | Magnoliopsida                                            | Asterales       | Asteraceae       |
| common boneset              | Eupatorium perfoliatum       | Magnoliopsida                                            | Asterales       | Asteraceae       |
| White Wood Aster            | Eurybia divaricata           | Magnoliopsida                                            | Asterales       | Asteraceae       |
| flat-topped goldenrod       | Euthamia graminifolia        | Magnoliopsida                                            | Asterales       | Asteraceae       |
| coastal plain Joe-Pye weed  | Eutrochium dubium            | Magnoliopsida                                            | Asterales       | Asteraceae       |
| spotted Joe-Pye weed        | Eutrochium maculatum         | Magnoliopsida                                            | Asterales       | Asteraceae       |
| Panicled Hawkweed           | Hieracium paniculatum        | Magnoliopsida                                            | Asterales       | Asteraceae       |
| Canada wild lettuce         | Lactuca canadensis           | Magnoliopsida                                            | Asterales       | Asteraceae       |
| oxeye daisy                 | Leucanthemum vulgare         | Magnoliopsida                                            | Asterales       | Asteraceae       |
| Wall Lettuce                | Mycelis muralis              | Magnoliopsida                                            | Asterales       | Asteraceae       |
| rattlesnake roots           | Nabalus spp.                 | Magnoliopsida                                            | Asterales       | Asteraceae       |
| whorled wood aster          | Oclemena acuminata           | Magnoliopsida                                            | Asterales       | Asteraceae       |
| bog aster                   | Oclemena nemoralis           | Magnoliopsida                                            | Asterales       | Asteraceae       |
| golden ragwort              | Packera aurea                | Magnoliopsida                                            | Asterales       | Asteraceae       |
| meadow hawkweed             | Pilosella caespitosa         | Magnoliopsida                                            | Asterales       | Asteraceae       |
| silverrod                   | Solidago bicolor             | Magnoliopsida                                            | Asterales       | Asteraceae       |
| giant goldenrod             | Solidago gigantea            | Magnoliopsida                                            | Asterales       | Asteraceae       |
| field goldenrod             | Solidago nemoralis           | Magnoliopsida                                            |                 |                  |
| Downy Goldenrod             | Solidago puberula            | Magnoliopsida                                            | Asterales       | Asteraceae       |
| calico aster                | Symphyotrichum lateriflorum  | Magnoliopsida                                            | Asterales       | Asteraceae       |

| Common Name                 | Scientific Name            | Taxonomic Class                                 | Taxonomic Order | Taxonomic Family |
|-----------------------------|----------------------------|-------------------------------------------------|-----------------|------------------|
| New York aster              | Symphyotrichum novi-belgii | Magnoliopsida Asterales                         |                 | Asteraceae       |
| Indian tobacco              | Lobelia inflata            | Magnoliopsida                                   | Asterales       | Campanulaceae    |
| spoonleaf sundew            | Drosera intermedia         | Drosera intermedia Magnoliopsida Caryophyllales |                 | Droseraceae      |
| round-leaved sundew         | Drosera rotundifolia       | Magnoliopsida                                   | Caryophyllales  | Droseraceae      |
| fringed black bindweed      | Parogonum ciliinode        | Magnoliopsida                                   | Caryophyllales  | Polygonaceae     |
| halberd-leaved tearthumb    | Persicaria arifolia        | Magnoliopsida                                   | Caryophyllales  | Polygonaceae     |
| arrow-leaved tearthumb      | Persicaria sagittata       | Magnoliopsida                                   | Caryophyllales  | Polygonaceae     |
| Oriental bittersweet        | Celastrus orbiculatus      | Magnoliopsida                                   | Celastrales     | Celastraceae     |
| Canadian bunchberry         | Cornus canadensis          | Magnoliopsida                                   | Cornales        | Cornaceae        |
| Black Tupelo                | Nyssa sylvatica            | Magnoliopsida                                   | Cornales        | Nyssaceae        |
| northern bush honeysuckle   | Diervilla lonicera         | Magnoliopsida                                   | Dipsacales      | Caprifoliaceae   |
| American black elderberry   | Sambucus canadensis        | Magnoliopsida                                   | Dipsacales      | Viburnaceae      |
| mapleleaf viburnum          | Viburnum acerifolium       | Magnoliopsida                                   | Dipsacales      | Viburnaceae      |
| northern wild raisin        | Viburnum cassinoides       | Magnoliopsida                                   | Dipsacales      | Viburnaceae      |
| southern arrowwood          | Viburnum dentatum          | Magnoliopsida                                   | Dipsacales      | Viburnaceae      |
| hobblebush                  | Viburnum lantanoides       | Magnoliopsida                                   | Dipsacales      | Viburnaceae      |
| common jewelweed            | Impatiens capensis         | Magnoliopsida                                   | Ericales        | Balsaminaceae    |
| leatherleaf                 | Chamaedaphne calyculata    | Magnoliopsida                                   | Ericales        | Ericaceae        |
| striped wintergreen         | Chimaphila maculata        | Magnoliopsida                                   | Ericales        | Ericaceae        |
| pipsissewa                  | Chimaphila umbellata       | Magnoliopsida                                   | Ericales        | Ericaceae        |
| trailing arbutus            | Epigaea repens             | Magnoliopsida                                   | Ericales        | Ericaceae        |
| creeping snowberry          | Gaultheria hispidula       | Magnoliopsida                                   | Ericales        | Ericaceae        |
| Eastern Teaberry            | Gaultheria procumbens      | Magnoliopsida                                   | Ericales        | Ericaceae        |
| black huckleberry           | Gaylussacia baccata        | Magnoliopsida                                   | Ericales        | Ericaceae        |
| sheep laurel                | Kalmia angustifolia        | Magnoliopsida                                   | Ericales        | Ericaceae        |
| mountain laurel             | Kalmia latifolia           | Magnoliopsida                                   | Ericales        | Ericaceae        |
| He-huckleberry              | Lyonia ligustrina          | Magnoliopsida                                   | Ericales        | Ericaceae        |
| pinesap                     | Monotropa hypopitys        | Magnoliopsida                                   | Ericales        | Ericaceae        |
| Ghost Pipe                  | Monotropa uniflora         | Magnoliopsida                                   | Ericales        | Ericaceae        |
| shinleaf                    | Pyrola elliptica           | Magnoliopsida                                   | Ericales        | Ericaceae        |
| Rhodora                     | Rhododendron canadense     | Magnoliopsida                                   | Ericales        | Ericaceae        |
| Bog Labrador Tea            | Rhododendron groenlandicum | Magnoliopsida                                   | Ericales        | Ericaceae        |
| lowbush blueberry           | Vaccinium angustifolium    | Magnoliopsida                                   | Ericales        | Ericaceae        |
| Northern highbush blueberry | Vaccinium corymbosum       | Magnoliopsida                                   | Ericales        | Ericaceae        |
| velvetleaf blueberry        | Vaccinium myrtilloides     | Magnoliopsida                                   | Ericales        | Ericaceae        |
| northern starflower         | Lysimachia borealis        | Magnoliopsida                                   | Ericales        | Primulaceae      |
| fringed loosestrife         | Lysimachia ciliata         | Magnoliopsida                                   | Ericales        | Primulaceae      |


| Common Name                   | Scientific Name           | Taxonomic Class | Taxonomic Order | <b>Taxonomic Family</b> |
|-------------------------------|---------------------------|-----------------|-----------------|-------------------------|
| swamp candles                 | Lysimachia terrestris     | Magnoliopsida   | Ericales        | Primulaceae             |
| large hop clover              | Trifolium aureum          | Magnoliopsida   | Fabales         | Fabaceae                |
| Red Clover                    | Trifolium pratense        | Magnoliopsida   | Fabales         | Fabaceae                |
| tufted vetch                  | Vicia cracca              | Magnoliopsida   | Fabales         | Fabaceae                |
| racemed milkwort              | Senega polygama           | Magnoliopsida   | Fabales         | Polygalaceae            |
| gray alder                    | Alnus incana              | Magnoliopsida   | Fagales         | Betulaceae              |
| yellow birch                  | Betula alleghaniensis     | Magnoliopsida   | Fagales         | Betulaceae              |
| heartleaf paper birch         | Betula cordifolia         | Magnoliopsida   | Fagales         | Betulaceae              |
| sweet birch                   | Betula lenta              | Magnoliopsida   | Fagales         | Betulaceae              |
| paper birch                   | Betula papyrifera         | Magnoliopsida   | Fagales         | Betulaceae              |
| gray birch                    | Betula populifolia        | Magnoliopsida   | Fagales         | Betulaceae              |
| hazels                        | Corylus spp.              | Magnoliopsida   | Fagales         | Betulaceae              |
| American chestnut             | Castanea dentata          | Magnoliopsida   | Fagales         | Fagaceae                |
| American beech                | Fagus grandifolia         | Magnoliopsida   | Fagales         | Fagaceae                |
| northern red oak              | Quercus rubra             | Magnoliopsida   | Fagales         | Fagaceae                |
| spreading dogbane             | Apocynum androsaemifolium | Magnoliopsida   | Gentianales     | Apocynaceae             |
| common milkweed               | Asclepias syriaca         | Magnoliopsida   | Gentianales     | Apocynaceae             |
| Narrowleaf Gentian            | Gentiana linearis         | Magnoliopsida   | Gentianales     | Gentianaceae            |
| Stiff Marsh Bedstraw          | Galium tinctorium         | Magnoliopsida   | Gentianales     | Rubiaceae               |
| three-petal bedstraw          | Galium trifidum           | Magnoliopsida   | Gentianales     | Rubiaceae               |
| fragrant bedstraw             | Galium triflorum          | Magnoliopsida   | Gentianales     | Rubiaceae               |
| azure bluet                   | Houstonia caerulea        | Magnoliopsida   | Gentianales     | Rubiaceae               |
| partridgeberry                | Mitchella repens          | Magnoliopsida   | Gentianales     | Rubiaceae               |
| northern bugleweed            | Lycopus uniflorus         | Magnoliopsida   | Lamiales        | Lamiaceae               |
| common selfheal               | Prunella vulgaris         | Magnoliopsida   | Lamiales        | Lamiaceae               |
| Marsh Skullcap                | Scutellaria galericulata  | Magnoliopsida   | Lamiales        | Lamiaceae               |
| side-flowering skullcap       | Scutellaria lateriflora   | Magnoliopsida   | Lamiales        | Lamiaceae               |
| common bladderwort            | Utricularia macrorhiza    | Magnoliopsida   | Lamiales        | Lentibulariaceae        |
| white ash                     | Fraxinus americana        | Magnoliopsida   | Lamiales        | Oleaceae                |
| narrowleaf cow wheat          | Melampyrum lineare        | Magnoliopsida   | Lamiales        | Orobanchaceae           |
| Allegheny monkeyflower        | Mimulus ringens           | Magnoliopsida   | Lamiales        | Phrymaceae              |
| Narrow-fruited Water-starwort | Callitriche palustris     | Magnoliopsida   | Lamiales        | Plantaginaceae          |
| white turtlehead              | Chelone glabra            | Magnoliopsida   | Lamiales        | Plantaginaceae          |
| heath speedwell               | Veronica officinalis      | Magnoliopsida   | Lamiales        | Plantaginaceae          |
| Marsh Speedwell               | Veronica scutellata       | Magnoliopsida   | Lamiales        | Plantaginaceae          |
| northern spicebush            | Lindera benzoin           | Magnoliopsida   | Laurales        | Lauraceae               |
| Canada St. John's wort        | Hypericum canadense       | Magnoliopsida   | Malpighiales    | Hypericaceae            |

| Common Name                   | Scientific Name            | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|-------------------------------|----------------------------|-----------------|-----------------|------------------|
| bigtooth aspen                | Populus grandidentata      | Magnoliopsida   | Malpighiales    | Salicaceae       |
| quaking aspen                 | Populus tremuloides        | Magnoliopsida   | Malpighiales    | Salicaceae       |
| silky willow                  | Salix sericea              | Magnoliopsida   | Malpighiales    | Salicaceae       |
| downy blue violet             | Viola fimbriatula          | Magnoliopsida   | Malpighiales    | Violaceae        |
| white bog violet              | Viola lanceolata           | Magnoliopsida   | Malpighiales    | Violaceae        |
| northern white violet         | Viola minuscula            | Magnoliopsida   | Malpighiales    | Violaceae        |
| kidneyleaf white violet       | Viola renifolia            | Magnoliopsida   | Malpighiales    | Violaceae        |
| Round-leaved Violet           | Viola rotundifolia         | Magnoliopsida   | Malpighiales    | Violaceae        |
| Pinweeds                      | Lechea spp.                | Magnoliopsida   | Malvales        | Cistaceae        |
| fireweed                      | Chamaenerion angustifolium | Magnoliopsida   | Myrtales        | Onagraceae       |
| Alpine Enchanter's-nightshade | Circaea alpina             | Magnoliopsida   | Myrtales        | Onagraceae       |
| cinnamon willowherb           | Epilobium coloratum        | Magnoliopsida   | Myrtales        | Onagraceae       |
| Water Purslane                | Ludwigia palustris         | Magnoliopsida   | Myrtales        | Onagraceae       |
| Variegated Yellow Pond-Lily   | Nuphar variegata           | Magnoliopsida   | Nymphaeales     | Nymphaeaceae     |
| mountain woodsorrel           | Oxalis montana             | Magnoliopsida   | Oxalidales      | Oxalidaceae      |
| Japanese barberry             | Berberis thunbergii        | Magnoliopsida   | Ranunculales    | Berberidaceae    |
| wood anemone                  | Anemonoides quinquefolia   | Magnoliopsida   | Ranunculales    | Ranunculaceae    |
| threeleaf goldthread          | Coptis trifolia            | Magnoliopsida   | Ranunculales    | Ranunculaceae    |
| meadow buttercup              | Ranunculus acris           | Magnoliopsida   | Ranunculales    | Ranunculaceae    |
| tall meadow-rue               | Thalictrum pubescens       | Magnoliopsida   | Ranunculales    | Ranunculaceae    |
| glossy buckthorn              | Frangula alnus             | Magnoliopsida   | Rosales         | Rhamnaceae       |
| chokeberries                  | Aronia spp.                | Magnoliopsida   | Rosales         | Rosaceae         |
| Virginia strawberry           | Fragaria virginiana        | Magnoliopsida   | Rosales         | Rosaceae         |
| avens                         | Geum spp.                  | Magnoliopsida   | Rosales         | Rosaceae         |
| common cinquefoil             | Potentilla simplex         | Magnoliopsida   | Rosales         | Rosaceae         |
| black cherry                  | Prunus serotina            | Magnoliopsida   | Rosales         | Rosaceae         |
| chokecherry                   | Prunus virginiana          | Magnoliopsida   | Rosales         | Rosaceae         |
| multiflora rose               | Rosa multiflora            | Magnoliopsida   | Rosales         | Rosaceae         |
| dewdrop                       | Rubus dalibarda            | Magnoliopsida   | Rosales         | Rosaceae         |
| Common Dewberry               | Rubus flagellaris          | Magnoliopsida   | Rosales         | Rosaceae         |
| swamp dewberry                | Rubus hispidus             | Magnoliopsida   | Rosales         | Rosaceae         |
| red raspberry                 | Rubus idaeus               | Magnoliopsida   | Rosales         | Rosaceae         |
| dwarf raspberry               | Rubus pubescens            | Magnoliopsida   | Rosales         | Rosaceae         |
| American mountain ash         | Sorbus americana           | Magnoliopsida   | Rosales         | Rosaceae         |
| white meadowsweet             | Spiraea alba               | Magnoliopsida   | Rosales         | Rosaceae         |
| Steeplebush                   | Spiraea tomentosa          | Magnoliopsida   | Rosales         | Rosaceae         |
| slender stinging nettle       | Urtica gracilis            | Magnoliopsida   | Rosales         | Urticaceae       |

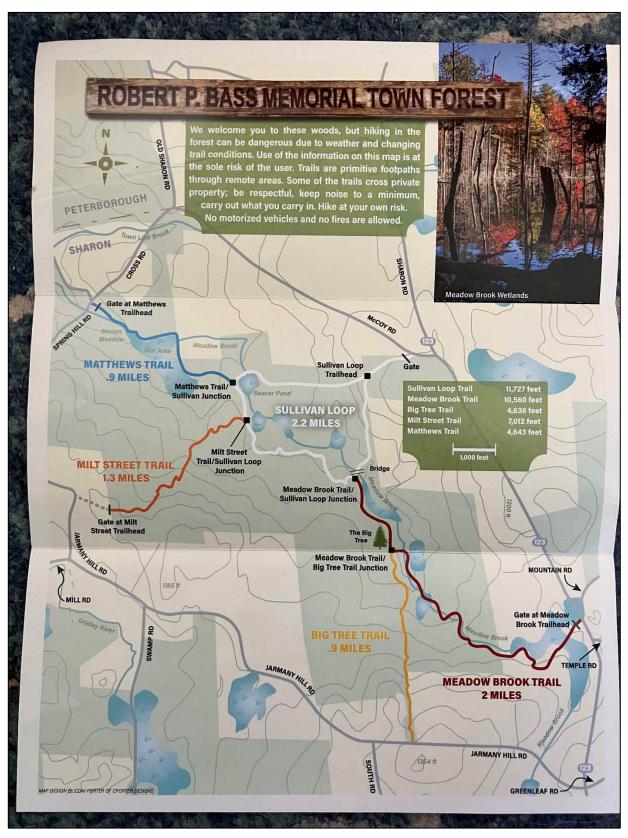

| Common Name               | Scientific Name            | Taxonomic Class                                 | Taxonomic Order | <b>Taxonomic Family</b> |
|---------------------------|----------------------------|-------------------------------------------------|-----------------|-------------------------|
| eastern poison ivy        | Toxicodendron radicans     | Toxicodendron radicans Magnoliopsida Sapindales |                 | Anacardiaceae           |
| striped maple             | Acer pensylvanicum         | Magnoliopsida                                   | Sapindales      | Sapindaceae             |
| red maple                 | Acer rubrum                | Magnoliopsida                                   | Sapindales      | Sapindaceae             |
| sugar maple               | Acer saccharum             | Magnoliopsida                                   | Sapindales      | Sapindaceae             |
| common witch-hazel        | Hamamelis virginiana       | Magnoliopsida                                   | Saxifragales    | Hamamelidaceae          |
| American golden saxifrage | Chrysosplenium americanum  | Magnoliopsida                                   | Saxifragales    | Saxifragaceae           |
| Creeping Foamflower       | Tiarella stolonifera       | Magnoliopsida                                   | Saxifragales    | Saxifragaceae           |
| grapevines                | Vitis spp.                 | Magnoliopsida                                   | Vitales         | Vitaceae                |
| common juniper            | Juniperus communis         | Pinopsida                                       | Pinales         | Cupressaceae            |
| balsam fir                | Abies balsamea             | Pinopsida                                       | Pinales         | Pinaceae                |
| white spruce              | Picea glauca               | Pinopsida                                       | Pinales         | Pinaceae                |
| red spruce                | Picea rubens               | Pinopsida                                       | Pinales         | Pinaceae                |
| red pine                  | Pinus resinosa             | Pinopsida                                       | Pinales         | Pinaceae                |
| pitch pine                | Pinus rigida               | Pinopsida                                       | Pinales         | Pinaceae                |
| eastern white pine        | Pinus strobus              | Pinopsida                                       | Pinales         | Pinaceae                |
| eastern hemlock           | Tsuga canadensis           | Pinopsida                                       | Pinales         | Pinaceae                |
| wood horsetail            | Equisetum sylvaticum       | Polypodiopsida                                  | Equisetales     | Equisetaceae            |
| interrupted fern          | Osmunda claytoniana        | Polypodiopsida                                  | Osmundales      | Osmundaceae             |
| American Royal Fern       | Osmunda spectabilis        | Polypodiopsida                                  | Osmundales      | Osmundaceae             |
| cinnamon fern             | Osmundastrum cinnamomeum   | Polypodiopsida                                  | Osmundales      | Osmundaceae             |
| northern lady fern        | Athyrium angustum          | Polypodiopsida                                  | Polypodiales    | Athyriaceae             |
| northern oak fern         | Gymnocarpium dryopteris    | Polypodiopsida                                  | Polypodiales    | Cystopteridaceae        |
| hay-scented fern          | Dennstaedtia punctilobula  | Polypodiopsida                                  | Polypodiales    | Dennstaedtiaceae        |
| common bracken            | Pteridium aquilinum        | Polypodiopsida                                  | Polypodiales    | Dennstaedtiaceae        |
| eagle fern                | Pteridium aquilinum        | Polypodiopsida                                  | Polypodiales    | Dennstaedtiaceae        |
| spinulose wood fern       | Dryopteris carthusiana     | Polypodiopsida                                  | Polypodiales    | Dryopteridaceae         |
| crested wood fern         | Dryopteris cristata        | Polypodiopsida                                  | Polypodiales    | Dryopteridaceae         |
| intermediate wood fern    | Dryopteris intermedia      | Polypodiopsida                                  | Polypodiales    | Dryopteridaceae         |
| marginal wood fern        | Dryopteris marginalis      | Polypodiopsida                                  | Polypodiales    | Dryopteridaceae         |
| Christmas fern            | Polystichum acrostichoides | Polypodiopsida                                  | Polypodiales    | Dryopteridaceae         |
| sensitive fern            | Onoclea sensibilis         | Polypodiopsida                                  | Polypodiales    | Onocleaceae             |
| rock polypody             | Polypodium virginianum     | Polypodiopsida                                  | Polypodiales    | Polypodiaceae           |
| New York fern             | Amauropelta noveboracensis | Polypodiopsida                                  | Polypodiales    | Thelypteridaceae        |
| Massachusetts fern        | Coryphopteris simulata     | Polypodiopsida                                  | Polypodiales    | Thelypteridaceae        |
| long beech fern           | Phegopteris connectilis    | Polypodiopsida                                  | Polypodiales    | Thelypteridaceae        |
| marsh fern                | Thelypteris palustris      | Polypodiopsida                                  | Polypodiales    | Thelypteridaceae        |
|                           |                            |                                                 |                 |                         |

| Common Name          | Scientific Name | Taxonomic Class | Taxonomic Order | Taxonomic Family |
|----------------------|-----------------|-----------------|-----------------|------------------|
| SLIME MOLDS          |                 |                 |                 |                  |
| Dog Vomit Slime Mold | Fuligo septica  | Myxomycetes     | Physarales      | Physaraceae      |
|                      | Tubifera spp.   | Myxomycetes     | Reticulariales  | Reticulariaceae  |

**APPENDIX C: SUPPLEMENTAL MAPS** 

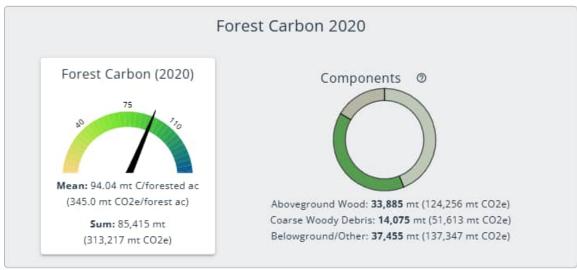


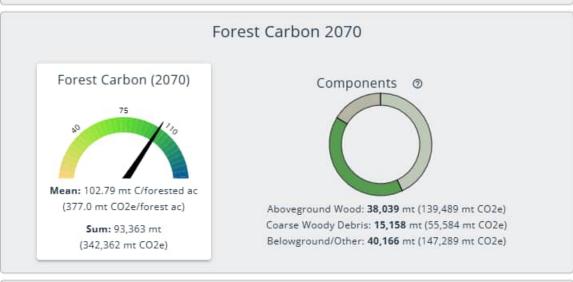
Geophysical settings, or the generalized growing conditions based on soil and bedrock, as mapped by The Natura Conservancy.



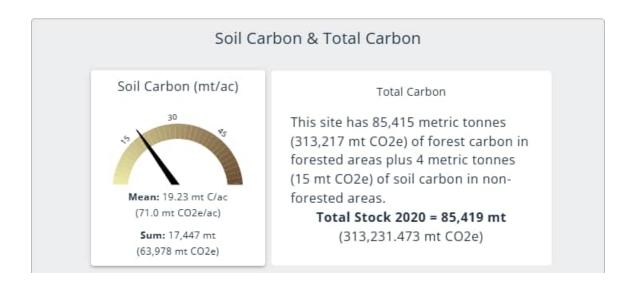

Locations of point-count stations used by breeding bird surveys at Sharon Town Forest.

# APPENDIX D: HABITAT BLOCK SIZE REQUIREMENTS FOR SELECTED WILDLIFE


| 1-19 Acres      | 20-99 Acres       | 100-499 Acres      | 500-2,500 Acres    | >2,500 Acres       |
|-----------------|-------------------|--------------------|--------------------|--------------------|
| raccoon         | raccoon           | raccoon            | raccoon            | raccoon            |
|                 | hare              | hare               | hare               | hare               |
|                 |                   |                    |                    | coyote             |
| small rodent    | small rodent      | small rodent       | small rodent       | small rodent       |
|                 | porcupine         | porcupine          | porcupine          | porcupine          |
|                 |                   |                    |                    | bobcat             |
| cottontail      | cottontail        | cottontail         | cottontail         | cottontail         |
|                 | beaver            | beaver             | beaver             | beaver             |
|                 |                   |                    |                    | black bear         |
| squirrel        | squirrel          | squirrel           | squirrel           | squirrel           |
|                 | weasel            | weasel             | weasel             | weasel             |
|                 |                   | mink               | mink               | mink               |
|                 |                   |                    |                    | fisher             |
|                 | woodchuck         | woodchuck          | woodchuck          | woodchuck          |
|                 |                   | deer               | deer               | deer               |
| muskrat         | muskrat           | muskrat            | muskrat            | muskrat            |
|                 |                   |                    | moose              | moose              |
| red fox         | red fox           | red fox            | red fox            | red fox            |
| songbirds       | songbirds         | songbirds          | songbirds          | songbirds          |
|                 |                   | sharp-shinned hawk | sharp-shinned hawk | sharp-shinned hawk |
|                 |                   |                    | bald eagle         | bald eagle         |
| skunk           | skunk             | skunk              | skunk              | skunk              |
|                 |                   | Cooper's hawk      | Cooper's hawk      | Cooper's hawk      |
|                 |                   | harrier            | harrier            | harrier            |
|                 |                   | broad-winged hawk  | broad-winged hawk  | broad-winged hawk  |
|                 |                   |                    | goshawk            | goshawk            |
|                 |                   | kestrel            | kestrel            | kestrel            |
|                 |                   |                    | red-tailed hawk    | red-tailed hawk    |
|                 |                   | great-horned owl   | great-horned owl   | great-horned owl   |
|                 |                   |                    | raven              | raven              |
|                 |                   | barred owl         | barred owl         | barred owl         |
|                 |                   | osprey             | osprey             | osprey             |
|                 |                   | turkey vulture     | turkey vulture     | turkey vulture     |
|                 |                   | turkey             | turkey             | turkey             |
| most reptiles   | most reptiles     | reptiles           | reptiles           | reptiles           |
|                 | garter snake      | garter snake       | garter snake       | garter snake       |
|                 | ring-necked snake | ring-necked snake  | ring-necked snake  | ring-necked snake  |
| most amphibians | most amphibians   | most amphibians    | amphibians         | amphibians         |
| _               | _                 | wood frog          | wood frog          | wood frog          |


**APPENDIX E: TRAIL MAP BROCHURE** 






# **APPENDIX F: FOREST CARBON ESTIMATES**









### Forest Carbon (2020)

#### Forest Carbon Estimates

The forest carbon data in the Resilience Lands Mapping Tool (RLMT) is from the newest update of the National Forest Carbon Monitoring System (NFCMS) - version 3.0 (Hasler & Williams 2025). The NFCMS is a comprehensive dataset of pixel-level carbon stocks and fluxes for the conterminous U.S. at a 30-m resolution and is derived from a combination of an inventory-constrained carbon cycle model, satellite-based aboveground biomass, satellite-based forest disturbance mapping, and a set of ancillary datasets characterizing additional forest attributes. It is based on a similar methodology to the published version of NFCMS (Williams et al. 2021) with significant updates in FIA-fitted carbon curves as well as forest extent and forest disturbance history. See https://www.maps.tnc.org/resilientland/#/explore

While the core method of the newer NFCMS v3 dataset is based on the previous release, significant improvements have been made to the methods. The current reference year is 2020, which was previously 2010. The forest extent and forest disturbances are based on the Land Change Monitoring, Assessment, and Projection (LCMAP, Pengra et al. 2020) dataset instead of the North American Forest Dynamics dataset (NAFD, Goward et al. 2015, Zhao et al. 2018). The fitting of the carbon curves to the FIA plot data has been improved.

In NFCMS v3, the following carbon pools are provided for years 2020, 2050, and 2070. The year 2020 is the "current" state of the forest, where disturbances such as harvest and fires up to 2020 have been accounted for. Years 2050 and 2070 are projected carbon stocks in a grow-only scenario where no disturbance nor changes in climate are considered. The grow-only scenario is an upper bound of possible carbon sequestration if no disturbance was to occur.

- Aboveground biomass (live woody material including stems, branches, and bark);
- Live biomass (aboveground biomass including leaves, and belowground biomass including fine roots) -this pool is provided instead of the individual belowground biomass, leaves, and fine roots;
- Soil carbon as the sum of all soil carbon layers;
- Total ecosystem carbon as the sum of all pool, including all live biomass, coarse woody debris (above- and below-ground), snag (when applicable), litter, and soil layers;

#### **Data Attribution**

The NFCMS v3 was developed by Dr. Natalia Hasler and Dr. Christopher Alan Williams of the Biogeosciences Research Group at Clark University for the Open Space Institute with additional support from the U.S. Forest Service Forest Legacy Program, Trust for Public Land, and The Nature Conservancy. The NFCMS v3 is published as a publicly available USFS dataset at this <a href="https://link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.ncm/link.n

Application in the Resilient Land Mapping Tool (RLMT)

For use in the RLMT, all NFCMS v3 units were converted from metric tonnes of CO2 per acre (Mg CO2 acres-1) to metric tonnes of carbon per pixel (Mg CO2 acres-1 \* 0.0606475 where Mg CO2 acres-1/3.667 \* 1 acre/4046.86 m2 \* 900 m2/1 pixel = 1 metric tonne carbon/pixel) and rounded to the nearest integer. To convert metric tonnes of carbon per pixel back to Mg CO2 acres-1, divide by 0.0606475, but note the small impact of rounding values for use in the RLMT.

For display in the RLMT, the metric tonnes per pixel values were converted to metric tonnes per acre by multiplying the pixel values by 4.496511. To convert metric tonnes per acre to metric tonnes CO2 per acre, multiply by 3.667.

The RLMT allows users to view total ecosystem carbon estimates for 2020 and 2070, and the polygon tool provides summaries of all four carbon pools for 2020 and 2070 in metric tonnes per forested acre and in metric tonnes of CO2 per acre. The NFCMS v3 data for all years (2020, 2050, and 2070) and for all carbon pools in Mg CO2 acres-1 can be downloaded from the following web site: https://www.fs.usda.gov/rds/archive/catalog/RDS-2025-0019.

Click here for more details about the NFCMS v3 methods. <a href="https://s3.us-east-1.amazonaws.com/osi-craft/pdfs/NFCMS-Guidance-Document.pdf">https://s3.us-east-1.amazonaws.com/osi-craft/pdfs/NFCMS-Guidance-Document.pdf</a>

#### Citations

Goward, S. N., Huang, C., Zhao, F., Schleeweis, K., Rishmawi, K., Lindsey, M., et al. (2015). NACP NAFD Project: Forest Disturbance History from Landsat, 1986-2010. In: ORNL Distributed Active Archive Center.

Hasler, Natalia; Williams, Christopher A. 2025. National Forest Carbon Monitoring System (NFCMS) version 3.0 - Carbon stocks and potential sequestration over conterminous U.S. forests. Fort Collins, CO: Forest Service Research Data Archive. a

href='https://doi.org/10.2737/RDS-2025-0019' target='\_blank'>https://doi.org/10.2737/RDS-2025-0019

Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., et al. (2020). LCMAP Reference Data Product 1984-2018 land cover, land use and change process attributes (ver. 1.2, November 2021).

Williams, C.A., N. Hasler, H. Gu, and Y. Zhou. 2021. Forest Carbon Stocks and Fluxes from the NFCMS, Conterminous USA, 1990-2010. ORNL DAAC, Oak Ridge, Tennessee, USA. <a href="https://doi.org/10.3334/ORNLDAAC/1829">https://doi.org/10.3334/ORNLDAAC/1829</a>

Zhao, F., Huang, C., Goward, S. N., Schleeweis, K., Rishmawi, K., Lindsey, M. A., et al. (2018). Development of Landsat-based annual US forest disturbance history maps (1986–2010) in support of the North American Carbon Program (NACP). Remote Sensing of Environment, 209, 312-326. https://www.sciencedirect.com/science/article/pii/S0034425718300476

## Forest Carbon (2070)

The method used to calculate the 2070 carbon stocks was the same as described for the 2020 forest carbon stocks, except that the model assumed no disturbances to the forests after year 2020. Because the modeled forests grow undisturbed from 2020 onward, the results can be used to estimate the potential carbon sequestration if the forest were free of harvest, fire, or conversion. While conservation efforts can limit harvest and conversion, it is difficult to predict future disturbances and users should be aware that the actual sequestration may be less than predicted.

Note that there are some pixels where forest carbon could decrease from 2020 to 2070. This only occurs if there was a forest disturbance just prior to 2020.

#### **Potential Carbon Sequestration (2020-2070)**

The *Total Potential Sequestration* is estimated as: (2070 stock - 2020 stock). The analysis tool also calculates the **Average Annual Sequestration Rate** per selected **site** ((2070 stock - 2020 stock)/50 years) and per **acre** ((2070 stock-2020 stock)/50 years/acres). The potential sequestration layer in the map is displayed as metric tonnes / acre. The values in the carbon summary report for a polygon are reported in both metric tonnes and metric tonnes/acre/year.

**Reforestation:** This tool is not designed to identify places with the highest potential for reforestation to increase carbon sequestration. To address that question, check out <a href="https://www.ReforestationHub.org">www.ReforestationHub.org</a>

#### Soil Carbon (mt/ac)

Estimates of soil organic carbon (SOC) for 0-30 cm topsoil layer at 250-m resolution for the conterminous USA (CONUS) are from Oak Ridge Lab (<u>Guevara et al. 2020</u>). The estimates are for the period 1991-2010 and were derived using the USDA Rapid Carbon Assessment (RaCA), which used over 6000 field soil samples and multiple environmental variables representative of the soil-forming environment coupled with a machine learning approach (i.e., simulated annealing) and regression tree ensemble modeling for optimized SOC prediction. Across the continental US, nearly 31% of SOC was found in forests, 28% in croplands, and 35% in grasslands and shrublands respectively.

Guevara, M., C.E. Arroyo-cruz, N. Brunsell, C.O. Cruz-gaistardo, G.M. Domke, J. Equihua, J. Etchevers, D.J. Hayes, T. Hengl, A. Ibelles, K. Johnson, B. de Jong, Z. Libohova, R. Llamas, L. Nave, J.L. Ornelas, F. Paz, R. Ressl, A. Schwartz, S. Wills, and R. Vargas. 2020. Soil Organic Carbon Estimates for 30-cm Depth, Mexico and Conterminous USA, 1991-2011. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1737

Current Land Cover Adjustments: For the Soil Carbon datasets, we used the 2023 National Land Cover Database (NLCD) to remove soil carbon pixels that occurred on open water and developed land (high, medium, and low intensity).

**Total Carbon**: Estimates for total carbon in the carbon calculator use Forest Carbon 2020 for all cells with forest cover and Soil Carbon 2010 for all cells with non-forest cover. To combine the two datasets, we resampled the SOC data to a 30-m resolution to align with our other data products. Please note that resampling to a higher 30-m resolution introduces false accuracy as the original SOC data was at a lower 250-m resolution.